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Abstract

In the estimation of data with many zeros (sparse data), asigfavelet coefficients, thresholding
is a common technique. This paper investigates the beha¥itire minimum risk threshold for
large values of the noise standard deviation. It finds thathiheshold depends quadratically on the
noise standard deviation. The relevance of this resultusatgd in the context of both Bayesian and
universal thresholding.
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1 Introduction

Thresholding has been an intensively studied, yet stifaighard procedure in nonlinear estimation of
sparse sequences. The research on this subject has beradehygithe popularity of wavelet theory
and applications, but the problem of estimating sparseesesps also arises in other areas, such as the
detection of gene expressions in micro array data.

Among the numerous threshold assessment procedures, itlegsah threshold takes a prominent
position, as it offers many optimality properties [3, 5] tihetails of which are far beyond the scope of
this paper. For a vector @f observations with constant varianeg, this threshold equals

Auniv = V2log No. D

In practical applications, such as image denoising, theansal threshold is often found to be too conser-
vative, i.e., it removes too much of the underlying datarghg causing blur in the output. Nevertheless,
the simplicity of expression (1) makes it a good startingipoi many practical algorithms as well.

The expression (1) for the universal threshold has beewatbds an asymptotic results @ in
the first place. The expression suggests, however, thahtesghold should depend linearly on the stan-
dard deviation of the noise. This seems to confirm the imtithat ‘a good’ (in some sense optimal?)
threshold should be proportional to the amount of noise.H@rother hand, some thresholds in Bayesian
models [10, 2, 11] follow a quadratic rule:

2
)‘bayes = Canoise/asignal, (2)
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with constantC' depending on the used model. Depending on the exact Bayasidel and the Bayesian
decision rule, this result is exact [11] or a numerical agpnation of the asymptotic behavior for
Osignal — 00, SO not for the dependence of.;. in the first place [2]. Nevertheless, in any case, the
Bayesian analysis seems to suggest that the thresholdddethken proportional to the noise variance,
rather than to its standard deviation. This paper investigthe dependence of the minimum expected
average squared error threshold on the standard devidtifinds that the linear dependence holds for
small amounts of noise, while even for moderate noise, tipemntence becomes quadratic. This re-
sult holds regardless of the configuration of the coeffigieahd hence for any prior model in Bayesian
thresholding. The paper interprets this result and itsifiigmce with respect to the existing universal
and Bayesian thresholds.

2 Definitions

Suppose we are givel¥ observations in the following additive, i.i.d. (indepentg identically dis-
tributed) normal model:
w=7v+ w, 3)

wherew, v, w are real vectors of lengtlv, andw consists of independent, normally distributed random
variables with zero mean and equal varianée The vector of noise-free variablesis typically sparse,
meaning that it contains a lot of (near-)zeros, but no assompm this sense is needed in the forthcoming
results.

The noise-free variables are estimated by a pointwisehblésrocedure, with one common thresh-
old valueA:

vV = wa,

wherew, stands for the output of a threshold operation applied tosémborw. The precise definition
of this threshold operation is subject to some degrees etitm.

The hard threshold operation is defined as

wy =HT\(v) ©Vi=1,...,N : wy =0if [w;| < xand
w)y; = w; otherwise.

The soft threshold operation is defined as

wy =ST\(v) = Vi=1,...,N:wy =0if |w;|] < Xand
wy; = sign(w;) - (|w;] — \) otherwise.

In other words, soft thresholding not only sets small valitegero, but also shrinks the larger values
by an amount equal to the threshold. As a consequence, timtiva between small and large value
operation is continuous (although not continuously défaiable). There exists numerous intermediate
threshold operations that combine the continuity propeftthe soft threshold operation with the zero
shrinkage property for large values in a hard threshold gdoe [6, 1]. An important class of such
threshold operations is defined in a Bayesian framework [9].

For any threshold operation (soft, hard or intermediate,risk, or expected average squared error
(EASE) is defined as

R()) = EASE(N) =  Bllwx o] (4)



The minimization of the risk function is the objective in angortant class of wavelet thresholds es-
timators, such as SURE (Stein’s Unbiased Risk Estimatdrpf4Generalized) Cross Validation [8].
Straightforward calculations (i.e., by taking the detives of the exact risk expressions found in the lit-
erature [3, Appendix 2]) show that the soft threshold riskmradditive, i.i.d. normal model is minimized
if the threshold\ satisfies the following nonlinear equation:

g _ Zz‘]\iﬁb(%) +¢<%> 7 5)

S [r-e(3)]+ - (22)]

where¢(x) is the standard normal probability density function (pdifl@ (z) is the standard normal
cumulative distribution function (cdf). For hard thresttioh, the risk is minimized if

() -0 ()]
S e (25) o (35)

(6)

3 Main result

The main result of this paper is stated in the following pisipon.

Proposition 1 For a given vectow of fixed lengthV, and for increasing noise varianeg — oo, the
minimum risk soft threshold behaves as:
A~ K02 @)

whereK is the solution of the nonlinear equation

D Y e ) @©
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Experiments show that this limit behavior is reached evenaterate noise levels, i.e., for values of
o within the range of the noise-free coefficients Before proving this proposition, we also prove the
following result for small noise levels.

Proposition 2 Assume that a given vecterof fixed lengthV has Ny > 0 zero entries, then for decreas-
ing noise variancer? — 0, the minimum risk soft threshold behaves as:

A~ k- o, 9
wherek is the solution of the nonlinear equation

B No2¢(k)
Ny + No2[1 — ®(k)]’

(10)

whereN; = N — Ng.



Proof: DenoteT' (o) = A\(o) /o, then Equation (5) becomes

_ YL, ¢ (T(0) —vi/o) + ¢ (T(0) + vi/o)

T(o) = —=x . (11)
>im1 1 =@ (T(0) —vifo)] +[L = @ (T(0) + vi/0)]

If all |v;] > 0 (i.e., Ng = 0), then taking the limit for — 0 on both sides of (11) leads (o) — 0.

Indeed, the numerator on the right hand side consists ofténat all tend to zero, as the arguments of

the standard normal pdf all tend to infinity. The terms in teaaminator on the other hand tendite- 0

or0+ 1.
If Ny > 0, then taking the limits on both sides of (11) leads to:

No2¢ (li T
k=1lmT(o) = 026 ( 1m(,_,0. (@)
oc—0 N1 -1+ Ny2 [1 - (hmg_,o T(O’))] s
which proves Proposition 2. 0

For the proof of Proposition 1 we need the following lemma.
Lemma 1 For T'(o) as defined in (11), we haven, ., 7'(0) = oc.
Proof: Taking the limit on both sides of (11) leads to an equation/fet lim,_,~, 7'(0):

¢(L)
[1—@(L)]
This equation has no finite solution. O
Proof of Proposition 1:
Sincelim, o, T(c) = oo, we can use the expansior @ (u) ~ ¢(u)- [(1/u) — (1/u?)] for approxima-
tion the equation (11). Although we omit the full analysis feasons of space limits, it can be verified
that all subsequent approximations leave the asymptotievder of the solution of (11) unchanged.
Equation (11) can be written as:

L=

N
> (T +vi/o) + (T —vifo) =
=1

N

1 1
;¢(T+U¢/U)<T+% - (T+%)3i"'>

+6(T - v;/0) <T_1 - (T_l%)g j:ﬂ .

Using the fact that fol'c — oo, we have that

T

this becomes

N V; 1 V;
DT +vi/o) [ﬁ + 7 (1 - 3ﬁ)] ~



Using the equality
(b(T + Ui/o') + (b(T — UZ‘/O') — (b(T) . e—viz/Qg? (e—TUi/U + eTvi/a)7

we can write the previous expression as:
N
Z 671}1’2/202% ) (T/O') (eTvi/a . efTvi/U)
=1
N
_ ZG—U%/202 (eTUi/U + e—Tw/a) )
=1

Foro — oo, and fixed vectow the factorse /20" — 1 rapidly. What remains is an equation in
K = T/o. Solving forT as a function ot thus proceeds by solving for the constdtt= T'/o first,
followed by letting7'(c) = K - . This concludes the proof. O

4 The hard thresholding case

An argument, totally similar to the one for Proposition Bds to a result for hard thresholding:

Proposition 3 For a given vectow of fixed lengthV, and for increasing noise varianeg® — oo, the
minimum risk hard threshold behaves as:

A~ K(0) - o2, (12)
whereK (o) is the solution of the nonlinear equation

2 le\il v; (e”iK — e_”iK)

- 0—2 ZNl (eUiK + e_UiK) '

i=

(13)

It can be verified thak((c) — oo, so the optimal hard threshold grows essentially faster the optimal
soft threshold.

5 Minimum risk thresholds in Bayesian models and Besov spase

The discussion in this section concentrates on the linksd®i the new results in this paper and existing
observations in Bayesian thresholding. Next, we also distloe link between the result and settings for
the universal threshold. Suppose that the noise-free datais an instance of a multivariate random
variable V', with constant variance? = Var(V;) and letU; = V;/a,, thenVar(U;) = 1. Equation (8)
can be written in the forrerV:1 G(K -V;) =0,whereG(z) = z(e* — e *) — (e + e 7). If K; isthe
solution of "N | G(K, -U;) = 0, then, obviouslyk = K, /o, is the solution o~ | G(K -o,U;) = 0.
Taking the expected values, we find thaf{ = EK;/o,, so the expected minimum risk threshold
satisfies o

E\=FK, - — 0. (14)
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This threshold is not the same as the minimum expected risisltbld, studied in Bayesian shrinkage
procedures [10, 2, 11]. Indeed, in those procedures, thectg value over random vectbf is taken
beforeit is minimized. Nevertheless, the results reported in gaper can be seen as an explanation
for the behavior of the optimal thresholds as observed irBégesian setting. Note that Equation (14)
has been derived from expressions for— oco. In the Bayesian setting, the expected minimum ASE
threshold,E )\, is, however, a function of both ando,. If o, is large, the assumptions in the proof of
Proposition 1 are no longer valid. We then have the followiegult.

Proposition 4 If v = o,u, and suppose all,; are different from zero, then far, — oo and for fixed
noise standard deviatios, the minimum risk soft threshold behaves as

Mo) ~ %fﬁ (on-2). (15)

If w hasNy > 0 zero entries, thetim,, o, A(0,) = oL, with L the solution of (10).

From this result, it follows immediately that in a Bayesianttimg, the expected value of this threshold
behaves a&yA(o,) ~ 20 Ey¢(o,U/o). If the prior onU is a double exponential (also known as the
Laplacian distribution), then
2
EuMoy) ~ V2 e ) 21 — d(o/0,)] - L. (16)

Oy
Up to the factor]l — ®(c/a,)]e~(e/7v)* which quickly approaches the constari®, this confirms the
behavior of several Bayesian thresholdsdgr— oc.
Proof of Proposition 4:
Equation (5) can be rewritten as

N

e )

N
Z < \uz\av>+¢<)\+fl\av>’ )

where\ is now a function ofr,. Let L = lim,, ,o, A/o and leta; = lim,, oo (A — |u;|oy) /0o, then
taking limits on both sides of the equation, leads to

N
L Z [1— ®(a;)] + LNo [1 — ®(L)] = > ¢(a;) + Nog(L),
=1
where N, is the number of zeros in. The left hand side is of the forth x R, whereR is finite for any
values ofL anda;. The right hand side is finite for all values &fanda;. As a consequencd, must
be finite, and so, by definition af;, a; = —oco if u; # 0 anda; = L otherwise. The cas®)y > 0 now
proceeds trivially to Equation (10). The ca¥g = 0 results inL = 0. As a consequence, fet, — o,
we have that in all arguments ¢fand®, A < |u;|o,, leading immediately to Equation (15). O
In Equations (14) and (16) we have investigated the limitlver of £\ for o — oc and foro, — oo
respectively. Both equations are limit cases of the follmpwgeneral observation.
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Proposition 5 The expected minimum risk soft threshéld(c, o,,) in @ Bayesian model is of the form
EXo,0,) = S(c/0y) - 0. (18)

Proof: From Equation (17), it follows thaEA(o, o,,) can only depend om, through the ratior/o,.
Since, for reasons of symmet#\(ko, ko,) = kEX(o, 0,), this implies Eq. (18). O

For S(o/0,) to be a constant, like in the universal threshold, it is neggsthatEA(ko,0,) =
kEX(o,0,) = EX ko, ko). This is only possible itr, = oo, i.e., if the prior model is a heavy tailed
distribution. As a matter of fact, this situation is intricedly assumed in an asymptotic analysis of the
minimum risk threshold fotv. — oo [7]. Typical signals belong to Besov balls, i.e., functiqrases
whose members can be represented sparsely in a wavelet plegition. Without going into the math-
ematical details, this sparsity ensures that if the numbebservations from the signal increases, the
dominant part of the information remains concentrated imééd number of coefficients. That number
of significant coefficients typically grows dsg N if N — oo. As a consequence, those coefficients
become more and more significaniNf — co. This can be seen as a case where 0, or, equivalently,
o, — 00, and so, the minimum risk threshold is found to behave (up ¢orestant depending on the
smoothness of the signal) as the universal thresholdvfes co. [7].

6 An illustration

As the results presented in this paper are asymptotic, fittésasting to have a look at the behavior of
the minimum risk thresholds for finite values of the noisexdtad deviation. (By finite values, we mean
intermediate values, i.e., values away from zero and igf)ritigure 1 depicts a typical set of sparse data.
It was generated as 2048 observationgrom a model which is mixture of a point mass at zero and a
Laplacian distribution with standard deviation equal®a/2. We can writeV; ~ (1 — p)d, + p Laplace.
The mixture parameteyp, controlling the sparsity, was set o= 1/50. Figure 2(a) is a plot of the
minimum risk threshold as a function of the noise standaxibtien o. Although the quadratic behavior
is not very visible from this plot, it becomes much more pnoenit in a plot of the derivative of the
minimum risk threshold, see Figure 2(b). The dashed linkimlot corresponds to the lired o, with

K defined in (8). Although this asymptotic line is reached &gk values of, an intermediate value of

o is already large compared to the many zeros in the noisedfige For these zeros, the approximations
made in the proof of Proposition 1 are valid. This results quadratic behavior, whose derivative is a
line parallel to the asymptotic result.

7 Conclusion

This paper has investigated the behavior of minimum risksholds in the presence of intense noise,
i.e., forc — oo and also in the presence of little noise, i.e.,dor 0. Foro — oo, the minimum risk
threshold behaves as ~ o2 (Proposition 1), while for — 0, we have that\ ~ o (Proposition 2).
Proposition 3 proves that minimum risk hard thresholds belegsentially different from minimum risk
soft thresholds.

The results have interesting interpretations with respee@xisting thresholds: first, they explain
the behavior of certain Bayesian thresholds. Secondly, dteo can be brought in perspective to the
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Figure 1: A sparse set of test data, generated as an instamee fmixture of a point mass at zero and a
Laplacian distribution.
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Figure 2: (a) Plot of minimum risk threshollas a function of the noise standard deviation(b) Plot

of the derivative\’' () of the function in Figure (a). The dashed line2i& o, which is the asymptotic
result from Proposition 1.



universal threshold and the assumption of sparsity in Bepacges. As for the Bayesian framework, the
elaboration of Proposition 4 with a double exponential piéads toE\ ~ /202 /o, if the variance of
the priora2 — co. A similar behavior follows from exact calculations in @t Bayesian frameworks
and is taken as a heuristic rule in others. This heuristicagah is now confirmed by the results in this
paper.

The results in this paper are limited to individual coefiitithresholding. More sophisticated thresh-
olding, such as thresholds for joint neighborhoods [11]a#fficients, can obtain better quality. It is an
interesting question if similar results hold for such a #v@ding procedure.
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