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Abstract

In the estimation of data with many zeros (sparse data), suchas wavelet coefficients, thresholding
is a common technique. This paper investigates the behaviorof the minimum risk threshold for
large values of the noise standard deviation. It finds that the threshold depends quadratically on the
noise standard deviation. The relevance of this result is situated in the context of both Bayesian and
universal thresholding.
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1 Introduction

Thresholding has been an intensively studied, yet straightforward procedure in nonlinear estimation of
sparse sequences. The research on this subject has been engined by the popularity of wavelet theory
and applications, but the problem of estimating sparse sequences also arises in other areas, such as the
detection of gene expressions in micro array data.

Among the numerous threshold assessment procedures, the universal threshold takes a prominent
position, as it offers many optimality properties [3, 5] thedetails of which are far beyond the scope of
this paper. For a vector ofN observations with constant varianceσ2, this threshold equals

λuniv =
√

2 logNσ. (1)

In practical applications, such as image denoising, the universal threshold is often found to be too conser-
vative, i.e., it removes too much of the underlying data, thereby causing blur in the output. Nevertheless,
the simplicity of expression (1) makes it a good starting point in many practical algorithms as well.

The expression (1) for the universal threshold has been derived as an asymptotic results onN in
the first place. The expression suggests, however, that the threshold should depend linearly on the stan-
dard deviation of the noise. This seems to confirm the intuition that ‘a good’ (in some sense optimal?)
threshold should be proportional to the amount of noise. On the other hand, some thresholds in Bayesian
models [10, 2, 11] follow a quadratic rule:

λbayes = Cσ2
noise/σsignal, (2)
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with constantC depending on the used model. Depending on the exact Bayesianmodel and the Bayesian
decision rule, this result is exact [11] or a numerical approximation of the asymptotic behavior for
σsignal → ∞, so not for the dependence onσnoise in the first place [2]. Nevertheless, in any case, the
Bayesian analysis seems to suggest that the threshold should be taken proportional to the noise variance,
rather than to its standard deviation. This paper investigates the dependence of the minimum expected
average squared error threshold on the standard deviation.It finds that the linear dependence holds for
small amounts of noise, while even for moderate noise, the dependence becomes quadratic. This re-
sult holds regardless of the configuration of the coefficients, and hence for any prior model in Bayesian
thresholding. The paper interprets this result and its significance with respect to the existing universal
and Bayesian thresholds.

2 Definitions

Suppose we are givenN observations in the following additive, i.i.d. (independently, identically dis-
tributed) normal model:

w = v + ω, (3)

wherew,v,ω are real vectors of lengthN , andω consists of independent, normally distributed random
variables with zero mean and equal varianceσ2. The vector of noise-free variablesv is typically sparse,
meaning that it contains a lot of (near-)zeros, but no assumption in this sense is needed in the forthcoming
results.

The noise-free variables are estimated by a pointwise threshold procedure, with one common thresh-
old valueλ:

v̂ = wλ,

wherewλ stands for the output of a threshold operation applied to thevectorw. The precise definition
of this threshold operation is subject to some degrees of freedom.

The hard threshold operation is defined as

wλ = HTλ(v) ⇔ ∀i = 1, . . . , N : wλi = 0 if |wi| ≤ λ and

wλi = wi otherwise.

The soft threshold operation is defined as

wλ = STλ(v) ⇔ ∀i = 1, . . . , N : wλi = 0 if |wi| ≤ λ and

wλi = sign(wi) · (|wi| − λ) otherwise.

In other words, soft thresholding not only sets small valuesto zero, but also shrinks the larger values
by an amount equal to the threshold. As a consequence, the transition between small and large value
operation is continuous (although not continuously differentiable). There exists numerous intermediate
threshold operations that combine the continuity propertyof the soft threshold operation with the zero
shrinkage property for large values in a hard threshold procedure [6, 1]. An important class of such
threshold operations is defined in a Bayesian framework [9].

For any threshold operation (soft, hard or intermediate), the risk, or expected average squared error
(EASE) is defined as

R(λ) = EASE(λ) =
1

N
E‖wλ − v‖2. (4)
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The minimization of the risk function is the objective in an important class of wavelet thresholds es-
timators, such as SURE (Stein’s Unbiased Risk Estimator) [4] or (Generalized) Cross Validation [8].
Straightforward calculations (i.e., by taking the derivatives of the exact risk expressions found in the lit-
erature [3, Appendix 2]) show that the soft threshold risk inan additive, i.i.d. normal model is minimized
if the thresholdλ satisfies the following nonlinear equation:

λ

σ
=

∑N
i=1 φ

(
λ−vi
σ

)
+ φ

(
λ+vi
σ

)

∑N
i=1

[
1− Φ

(
λ−vi
σ

)]
+
[
1− Φ

(
λ+vi
σ

)] , (5)

whereφ(x) is the standard normal probability density function (pdf) and Φ(x) is the standard normal
cumulative distribution function (cdf). For hard thresholding, the risk is minimized if

λ =
2
∑N

i=1 vi

[
φ
(
λ−vi
σ

)
− φ

(
λ+vi
σ

)]

∑N
i=1 φ

(
λ+vi
σ

)
+ φ

(
λ−vi
σ

) . (6)

3 Main result

The main result of this paper is stated in the following proposition.

Proposition 1 For a given vectorv of fixed lengthN , and for increasing noise varianceσ2 → ∞, the
minimum risk soft threshold behaves as:

λ ∼ K · σ2, (7)

whereK is the solution of the nonlinear equation

K =

∑N
i=1

(
eviK + e−viK

)
∑N

i=1 vi (e
viK − e−viK)

. (8)

Experiments show that this limit behavior is reached even atmoderate noise levels, i.e., for values of
σ within the range of the noise-free coefficientsv. Before proving this proposition, we also prove the
following result for small noise levels.

Proposition 2 Assume that a given vectorv of fixed lengthN hasN0 > 0 zero entries, then for decreas-
ing noise varianceσ2 → 0, the minimum risk soft threshold behaves as:

λ ∼ k · σ, (9)

wherek is the solution of the nonlinear equation

k =
N02φ(k)

N1 +N02[1 − Φ(k)]
, (10)

whereN1 = N −N0.
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Proof: DenoteT (σ) = λ(σ)/σ, then Equation (5) becomes

T (σ) =

∑N
i=1 φ (T (σ)− vi/σ) + φ (T (σ) + vi/σ)∑N

i=1 [1− Φ (T (σ)− vi/σ)] + [1− Φ (T (σ) + vi/σ)]
. (11)

If all |vi| > 0 (i.e.,N0 = 0), then taking the limit forσ → 0 on both sides of (11) leads toT (σ) → 0.
Indeed, the numerator on the right hand side consists of terms that all tend to zero, as the arguments of
the standard normal pdf all tend to infinity. The terms in the denominator on the other hand tend to1+0
or 0 + 1.

If N0 > 0, then taking the limits on both sides of (11) leads to:

k = lim
σ→0

T (σ) =
N02φ (limσ→0 T (σ))

N1 · 1 +N02 [1− Φ (limσ→0 T (σ))] ,

which proves Proposition 2. 2

For the proof of Proposition 1 we need the following lemma.

Lemma 1 For T (σ) as defined in (11), we havelimσ→∞ T (σ) = ∞.

Proof: Taking the limit on both sides of (11) leads to an equation forL = limσ→∞ T (σ):

L =
φ(L)

[1− Φ(L)]
.

This equation has no finite solution. 2

Proof of Proposition 1:
Sincelimσ→∞ T (σ) = ∞, we can use the expansion1−Φ(u) ≈ φ(u)·

[
(1/u) − (1/u3)

]
for approxima-

tion the equation (11). Although we omit the full analysis for reasons of space limits, it can be verified
that all subsequent approximations leave the asymptotic behavior of the solution of (11) unchanged.
Equation (11) can be written as:

N∑

i=1

φ(T + vi/σ) + φ(T − vi/σ) =

T

[
N∑

i=1

φ(T + vi/σ)

(
1

T + vi
σ

− 1

(T + vi
σ )

3
± . . .

)

+φ(T − vi/σ)

(
1

T − vi
σ

− 1

(T − vi
σ )

3
± . . .

)]
.

Using the fact that forTσ → ∞, we have that

1

1 + vi
Tσ

≈ 1− vi
Tσ

and
1

(
1 + vi

Tσ

)3 ≈ 1− 3
vi
Tσ

,

this becomes
N∑

i=1

φ(T + vi/σ)

[
vi
Tσ

+
1

T 2

(
1− 3

vi
Tσ

)]
≈

N∑

i=1

φ(T − vi/σ)

[
vi
Tσ

− 1

T 2

(
1 + 3

vi
Tσ

)]
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Using the equality

φ(T + vi/σ)± φ(T − vi/σ) = φ(T ) · e−v2
i
/2σ2

(e−Tvi/σ ± eTvi/σ),

we can write the previous expression as:

N∑

i=1

e−v2
i
/2σ2

vi · (T/σ)
(
eTvi/σ − e−Tvi/σ

)

=

N∑

i=1

e−v2
i
/2σ2

(
eTvi/σ + e−Tvi/σ

)
.

For σ → ∞, and fixed vectorv the factorse−v2
i
/2σ2 → 1 rapidly. What remains is an equation in

K = T/σ. Solving forT as a function ofσ thus proceeds by solving for the constantK = T/σ first,
followed by lettingT (σ) = K · σ. This concludes the proof. 2

4 The hard thresholding case

An argument, totally similar to the one for Proposition 1, leads to a result for hard thresholding:

Proposition 3 For a given vectorv of fixed lengthN , and for increasing noise varianceσ2 → ∞, the
minimum risk hard threshold behaves as:

λ ∼ K(σ) · σ2, (12)

whereK(σ) is the solution of the nonlinear equation

K =
2

σ2

∑N
i=1 vi

(
eviK − e−viK

)
∑N

i=1 (e
viK + e−viK)

. (13)

It can be verified thatK(σ) → ∞, so the optimal hard threshold grows essentially faster than the optimal
soft threshold.

5 Minimum risk thresholds in Bayesian models and Besov spaces

The discussion in this section concentrates on the links between the new results in this paper and existing
observations in Bayesian thresholding. Next, we also discuss the link between the result and settings for
the universal threshold. Suppose that the noise-free data vector is an instance of a multivariate random
variableV , with constant varianceσ2

v = Var(Vi) and letUi = Vi/σv, thenVar(Ui) = 1. Equation (8)
can be written in the form

∑N
i=1G(K · Vi) = 0, whereG(x) = x(ex − e−x)− (ex + e−x). If K1 is the

solution of
∑N

i=1 G(K1 ·Ui) = 0, then, obviouslyK = K1/σv is the solution of
∑N

i=1 G(K ·σvUi) = 0.
Taking the expected values, we find thatEK = EK1/σv , so the expected minimum risk threshold
satisfies

Eλ = EK1 ·
σ

σv
· σ. (14)
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This threshold is not the same as the minimum expected risk threshold, studied in Bayesian shrinkage
procedures [10, 2, 11]. Indeed, in those procedures, the expected value over random vectorV is taken
before it is minimized. Nevertheless, the results reported in thispaper can be seen as an explanation
for the behavior of the optimal thresholds as observed in theBayesian setting. Note that Equation (14)
has been derived from expressions forσ → ∞. In the Bayesian setting, the expected minimum ASE
threshold,Eλ, is, however, a function of bothσ andσv. If σv is large, the assumptions in the proof of
Proposition 1 are no longer valid. We then have the followingresult.

Proposition 4 If v = σvu, and suppose allui are different from zero, then forσv → ∞ and for fixed
noise standard deviationσ, the minimum risk soft threshold behaves as

λ(σv) ∼
2σ

N

N∑

i=1

φ
(
σv ·

ui
σ

)
. (15)

If u hasN0 > 0 zero entries, thenlimσv→∞ λ(σv) = σL, withL the solution of (10).

From this result, it follows immediately that in a Bayesian setting, the expected value of this threshold
behaves asEUλ(σv) ∼ 2σEUφ(σvU/σ). If the prior onU is a double exponential (also known as the
Laplacian distribution), then

EUλ(σv) ∼
√
2 · e−(σ/σv)2 · 2 [1− Φ(σ/σv)] ·

σ2

σv
. (16)

Up to the factor[1 − Φ(σ/σv)]e
−(σ/σv)2 , which quickly approaches the constant1/2, this confirms the

behavior of several Bayesian thresholds forσv → ∞.
Proof of Proposition 4:
Equation (5) can be rewritten as

λ

σ

N∑

i=1

[
1− Φ

(
λ− |ui|σv

σ

)]
+

[
1− Φ

(
λ+ |ui|σv

σ

)]

=
N∑

i=1

φ

(
λ− |ui|σv

σ

)
+ φ

(
λ+ |ui|σv

σ

)
, (17)

whereλ is now a function ofσv. Let L = limσv→∞ λ/σ and letai = limσv→∞(λ − |ui|σv)/σ, then
taking limits on both sides of the equation, leads to

L
N∑

i=1

[1− Φ(ai)] + LN0 [1− Φ(L)] =
N∑

i=1

φ(ai) +N0φ(L),

whereN0 is the number of zeros inu. The left hand side is of the formL×R, whereR is finite for any
values ofL andai. The right hand side is finite for all values ofL andai. As a consequence,L must
be finite, and so, by definition ofai, ai = −∞ if ui 6= 0 andai = L otherwise. The caseN0 > 0 now
proceeds trivially to Equation (10). The caseN0 = 0 results inL = 0. As a consequence, forσv → ∞,
we have that in all arguments ofφ andΦ, λ ≪ |ui|σv, leading immediately to Equation (15). 2

In Equations (14) and (16) we have investigated the limit behavior ofEλ for σ → ∞ and forσv → ∞
respectively. Both equations are limit cases of the following general observation.
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Proposition 5 The expected minimum risk soft thresholdEλ(σ, σv) in a Bayesian model is of the form

Eλ(σ, σv) = S(σ/σv) · σ. (18)

Proof: From Equation (17), it follows thatEλ(σ, σv) can only depend onσv through the ratioσ/σv .
Since, for reasons of symmetry,Eλ(kσ, kσv) = kEλ(σ, σv), this implies Eq. (18). 2

For S(σ/σv) to be a constant, like in the universal threshold, it is necessary thatEλ(kσ, σv) =
kEλ(σ, σv) = Eλ(kσ, kσv). This is only possible ifσv = ∞, i.e., if the prior model is a heavy tailed
distribution. As a matter of fact, this situation is intrinsically assumed in an asymptotic analysis of the
minimum risk threshold forN → ∞ [7]. Typical signals belong to Besov balls, i.e., function spaces
whose members can be represented sparsely in a wavelet decomposition. Without going into the math-
ematical details, this sparsity ensures that if the number of observations from the signal increases, the
dominant part of the information remains concentrated in a limited number of coefficients. That number
of significant coefficients typically grows aslogN if N → ∞. As a consequence, those coefficients
become more and more significant ifN → ∞. This can be seen as a case whereσ → 0, or, equivalently,
σv → ∞, and so, the minimum risk threshold is found to behave (up to aconstant depending on the
smoothness of the signal) as the universal threshold forN → ∞. [7].

6 An illustration

As the results presented in this paper are asymptotic, it is interesting to have a look at the behavior of
the minimum risk thresholds for finite values of the noise standard deviation. (By finite values, we mean
intermediate values, i.e., values away from zero and infinity.) Figure 1 depicts a typical set of sparse data.
It was generated as 2048 observationsvi from a model which is mixture of a point mass at zero and a
Laplacian distribution with standard deviation equal to10

√
2. We can writeVi ∼ (1− p)δ0 + p Laplace.

The mixture parameterp, controlling the sparsity, was set top = 1/50. Figure 2(a) is a plot of the
minimum risk threshold as a function of the noise standard deviationσ. Although the quadratic behavior
is not very visible from this plot, it becomes much more prominent in a plot of the derivative of the
minimum risk threshold, see Figure 2(b). The dashed line in this plot corresponds to the line2Kσ, with
K defined in (8). Although this asymptotic line is reached for large values ofσ, an intermediate value of
σ is already large compared to the many zeros in the noise-freedata. For these zeros, the approximations
made in the proof of Proposition 1 are valid. This results in aquadratic behavior, whose derivative is a
line parallel to the asymptotic result.

7 Conclusion

This paper has investigated the behavior of minimum risk thresholds in the presence of intense noise,
i.e., forσ → ∞ and also in the presence of little noise, i.e., forσ → 0. Forσ → ∞, the minimum risk
threshold behaves asλ ∼ σ2 (Proposition 1), while forσ → 0, we have thatλ ∼ σ (Proposition 2).
Proposition 3 proves that minimum risk hard thresholds behave essentially different from minimum risk
soft thresholds.

The results have interesting interpretations with respectto existing thresholds: first, they explain
the behavior of certain Bayesian thresholds. Secondly, they also can be brought in perspective to the

7



500 1000 1500 2000

−30

−20

−10

0

10

20

30

The noise−free data (2048 observations)

Figure 1: A sparse set of test data, generated as an instance from a mixture of a point mass at zero and a
Laplacian distribution.
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Figure 2: (a) Plot of minimum risk thresholdλ as a function of the noise standard deviationσ. (b) Plot
of the derivativeλ′(σ) of the function in Figure (a). The dashed line is2Kσ, which is the asymptotic
result from Proposition 1.

8



universal threshold and the assumption of sparsity in Besovspaces. As for the Bayesian framework, the
elaboration of Proposition 4 with a double exponential prior leads toEλ ∼

√
2σ2/σv if the variance of

the priorσ2
v → ∞. A similar behavior follows from exact calculations in certain Bayesian frameworks

and is taken as a heuristic rule in others. This heuristic approach is now confirmed by the results in this
paper.

The results in this paper are limited to individual coefficient thresholding. More sophisticated thresh-
olding, such as thresholds for joint neighborhoods [11] of coefficients, can obtain better quality. It is an
interesting question if similar results hold for such a thresholding procedure.
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