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Abstract

This paper introduces a framework for nonlinear, multis@#compositions of Poisson data that possess piecewise
smooth intensity curves. The key concept is conditioninghensum of the observations that are involved in the com-
putation of a given multiscale coefficient. Within this frawork, most classical wavelet thresholding schemes fa dat
with additive, homoscedastic noise can be used. Any fanfilwavelet transforms (orthogonal, biorthogonal, second
generation) can be incorporated into this framework. Oupseé contribution is to propose a Bayesian shrinkage ap-
proach with an original prior for coefficients of this decassjiion. As such, the method combines the advantages of
the Haar-Fisz transform with wavelet smoothing and (Bay®sMultiscale Likelihood models, with additional benefits
such as extendibility towards arbitrary wavelet famili8gnulations show an important reduction in average squared
ror of the output, compared to the present techniques of@nbe or Fisz variance stabilisation or Multiscale Likebido
Modelling.
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1 Introduction

Wavelet thresholding has proven to be a successful methodnrparametric smoothing or estimation of piecewise
smooth functions. Such intermittent data occur in a widéetaof applications, such as medical signals, biologycast
omy, geology, physics and all kinds of electrical signalse Mmost visual application is probably image denoising,r@he
the edges correspond to the discontinuities (or jumps)ydiial linear smoothing techniques, e.g. using Fourieeond
estimators, are doomed to fail: the output shows Gibbs phena and/or an often inacceptable bias — blur in image
processing terminology — near the jumps. A good smoothiggréghm should be able to locate (directly, or indirectly,
as in the case of wavelet thresholding) the points of disoaity, since they carry the essential information of théada
(signal, image). The combination of a wavelet transformedir in itself, with the nonlinear threshold method is a et
efficient approach for catching the singularities.

The subject of this paper is Poisson data. More specificayywant to estimate, for a given vector of Poisson count
observations, the corresponding vector of Poisson irtiessiPoisson noise has a multiplicative aspect. This mehas
more intense the signal is, the more variable are the fluonm{the noise). This type of noise results from counting
processes of ‘particles’ which independently hit the obser Typical examples of such Poisson processes in practice
are web statistics (number of hits on a web page), (intetrefffjc data, observations in astronomy, and tomographical
imaging. This paper includes a discussion of such a real@ample. The main difficulty we address is that Poisson
noise with time varying intensity cannot be homoscedasitice the variance equals the expected value.

Many wavelet thresholding techniques assume a constase behaviour: noise is typically supposed to be additive,
homoscedastic, and uncorrelated. Any orthogonal tramstdruncorrelated, homoscedastic noise is again uncoecklat
and homoscedastic. Homoscedastic wavelet coefficientiesieable for thresholding, since a single threshold cabeo
optimal for both a coefficient subject to noise with a largeasce and another coefficient where the noise has a small
variance. The basic idea behind thresholdinggarsity i.e., a wavelet transform maps a (digital) signal onto ao$et



waveletcoefficients The classical additive model (not used in this paper) assuimat the inpuy = f + n is a vector

of noisy observations from unknown function valugplus noisen. The observed (or empirical) wavelet coefficients
inherit the additive model, i.eww = v + w. Most noise-free values are close to zero, while only a limited subset
of large coefficients carries the essential informatiomcginoisew is spread out evenly (at least if the observations
are statistically independent and homoscedastic), a $mieobnstruction of the underlying signal can be obtained if
coefficients with magnitude below a certaimesholdvalue are replaced by zero. The multiresolution nature céealet
transform offers a solution for data with homoscedasticdmutelated noise: they are mapped onto coefficients that are
homoscedastic within each resolution, i.e., coefficiemis torrespond to basis functions with equal support widttkre
equal variance.

The concept of thresholding is appropriate for any noisgibigion with finite variance. Most threshold assessment
procedures however have been designed with additive, howoise in mind. The normal density is stable under a linear
transform: the wavelet coefficients are again normallyritisted.

Unlike the model of observations with additive, jointly nzal noise, the multiplicative Poisson model is not stable
under a linear transform, such as a wavelet transform: \waeekfficients are not Poisson distributed. A straightéoav
method to deal with this problem is a preprocessing, nosimgistep. Examples of this strategy are the Anscombe
transformation??) and the Fisz normalisatior?®). Most papers????) use the simple Haar transform. These specific
properties allow for an exact closed form of the scaling ficieht densities. This exact expression can be used in a
general Bayesian multiscale mod@P). A major theme of this paper is to extend ideas from Haaz-Becompositions
(?) and Bayesian Multiscale model®?) to any family of wavelet transforms. The proposed procedan thus deal with
any degree of smoothness in between sharp transitionggustclassical wavelet shrinkage.

A third direction of existing research is an asymptotic gtad the applicability of classical wavelet thresholding
when the Poisson intensities tend to infinity, for examplests against a homogeneous background. This paper however
considers signals with low intensities as well as signath wimixture of both low-count and high-count intervals.

Other methods apply general wavelet domain filtering (sscthainkage and modulation) based on unbiased variance
estimation in the wavelet domaifi??, page 136-137). Instead of filtering wavelet coefficierdse methods look for a
generalisation of the universal threshold to Poisson datar(wider classes of distribution8)(

For a more complete overview of the literature, we refer textensive comparative study of several existing methods
in?.

This paper is organised as follows: Section 2 introducesraliional variance stabilisation. This is extended to
an empirical Bayesian shrinkage approach in Section 3. Allgition study is presented in Section 4. This simulation
compares the proposed method with the normalisations bgd¥nbe @) and Fisz ?), and with the Bayesian multiscale
likelihood model @). These methods are considered among the state-of-tloé-tue currently available method8)(

The proposed method is found to have a superior performanoest settings.

2 The proposed conditional variance stabilisation (CVS)

2.1 Definitions

SupposeX is a vector ofn Poisson observations; with intensities\ = [\;];=1.. ... The wavelet transforni¥’, of these
data is given by -
W =WX,

.....

Any wavelet coefficientV; ,, at scalej and locatiork can be written as a linear combination of input data:

Wik = Z Vi ki Xis

’L‘Gijk

whereZ; ;. is the set of indices with nonzero entrigs, ; # 0 in the wavelet transform matrb¥’ on the row corresponding
to the coefficientV; ;.. We letr; , = #Z; ;, be the number of these non-zero entries. In most applicatanmd certainly



in the case of classical wavelet transforms on equispadeghda only depends on scaleand not on locatio within
that scale. Note that the doubley, k) indexed wavelet coefficients can be stored in single veatdengthn. The
wavelet coefficient$V; , are clearly heteroscedastic. For Poisson data, we cando@krformalisation factor, so that the
variances of the normalised coefficients are approximathstant and independent of the input intensities. We would
like the coefficients with noise-free value equal to zem.,, ithe negligible ones, to have constant variances, sdahbgat
can be removed with a single threshold.

We introduce anormalisation factorV;

Njk= > X

€L
It is clear thatV; , is Poisson distributed with intensity; .., equal to\; ;, = Zz‘ezj . ;. We then define theormalised
or variance stabilisedvavelet coefficient; ,, as: ’
Wi _ Zuer, kii
Zj7k = \/]V'JC \/ZiEIM Xi
0 if Nji=0

When applied to a Haar transform, this variance stabibgsateduces to the Haar-Fisz decompositi@n (Our first
intention is to make this variance stabilisation methodiapple to any wavelet basis function.

The remainder of this section concentrates on a single whweéfficient, and therefore we omit the subscrjsdk
for notational convenience, and writg, N, Z, X to indicate, respectively, a wavelet coefficient’s valte normalisation
factor, its normalised value and the intensity of its noiigalon factor. The cardinality of the set of non-zero estiin
the wavelet transform matrix is denotedbgnd we renumber these entries such that {1,...,r}.

We define for each wavelet coefficient tiedative intensitiep; of input X;, with ¢ € 7 as:

pPi = )‘i/)‘a

where\ = Zz‘ezj L A
The variance stabilisation property of this normalisat®formalised in the following lemma. All proofs follow in an
appendix.

Lemma 1 The variance stabilised wavelet coefficiehhas, conditional on the normalisation factdr being non-zero,
the following moments:

E(ZIN #£0) = E(VNIN £0) (Zm), )

T T 2 T

Var(Z|N #0) = Z’Y?Pi - <Z%‘pi> +V (\/NUV #+ 0) <Z ’yipl-> , 2
i=1 i=1 i=1
r r 2 r 2

E(ZIN #£0) = > ~ipi— <Z%Pi> +1 _Ae_k <Zwi> : 3)
i=1 i=1 i=1

In the expression of the conditional variariéer(Z|N # 0), the only factor depending on the absolute intensities
Var(v/N|N # 0). N is Poisson distributed with intensity= >"7_ \;. Itis well known that, for\ — oo, the variance
of the square root of a Poisson coult, converges quickly td /4. This means thaar(Z|N # 0) is nearly independent
of the absolute intensitiels. This is an interesting observation, since it motivateshyication of a threshold procedure
on the normalised coefficients.

The normalisation property of the proposed approach fdlfvam a generalisation of Fisz’s theore®).(



Proposition 1 Consider a vector of independent random variableX with finite meary;()\;) and variances?()\;),
where the density ok’; depends parametrically ok;. The parametric dependence is the same for all variables f.
Ai = Aj, thenX; and X; are i.i.d.). Suppose that, for eaghwhen\; — oo, X;/p; converges in probability to 1 and
(X; — u;)/o; converges in distribution to a standard normal variablesésie also that, ik; — oo for eachi in a given
subsetofi = 1,...,r}, then we have

D1 Yilti

— 0.
22:1 Hi
Then for the same subset, and for any positive numbidre variable
_ i X
(i X"
converges in distribution to normal variable with mean aagiance
Doty Vil
gy = =il (4)
(22:1 ,Ui)p
T 2 2
g = Z= 5)
(Zi:l 14i)

Applying this proposition to our case, witty = o; = X\; andp = 1/2, leads to an asymptotic variance @} =
>i_17Zp: and an asymptotic mean pf;, = V- >-i_1 vipi- This asymptotic mean tends to zero if the corresponding
noise-free wavelet coefficient vanishes, and tends to tgfotherwise. Actually, Lemma 1 shows that the mean of the
normalised coefficien is exactlyzero if the corresponding noise-free wavelet coefficiemistzes. The variance of a
normalised coefficient with zero mean equafs = 2 >-" | 72, which is1/r for orthogonal wavelet decompositions.
Again, Lemma 1 says that this value is exact, at least afteditioning onN # 0. The factorl/r is of orderO(277),

with j the scale of the coefficient.

2.2 Thresholding and reconstruction
The above conditional variance stabilisation (CVS) camiglémented via the following threshold algorithm.

1. Apply a wavelet transform to inpgt. The transform may be the standard fast decompositionljterpatively, a
redundant, shift-invariant representation. Denotedithe vector of coefficients in this decomposition.

2. For all coefficients, compute the normalisation factav .

3. Find a vector of appropriate level dependent thresh@ldisr the normalised coefficients = w/+v/N (using
coordinatewise division). Apply this threshold (usingtsbfrd or any intermediate threshold approach) and denote
by z¢ the thresholded normalised coefficients.

4. Re-multiply the thresholded normalised coefficients lvamm estimates for the noise-free wavelet coefficients:
v = z¢ - VN (coordinatewise multiplication).

5. An inverse wavelet transform yields an estimate of the$toi intensities.

In Step 2, the computation is basically bookkeeping of thypsut of the filter operations in each step of the multiscale
wavelet decomposition. This bookkeeping is as fast as thmbttansform. It is important to note that the introduntaf
bookkeeping does not cause a bottleneck in the smoothiogitlm.

When applied to the Haar transform, the proposed algorithimcades with the Haar-Fisz approach when used with
Haar wavelet shrinkage?). The threshold has to be level dependent, because, inajetier variance is not constant
across scales. The Haar transform is an exception, protidedhe transform filter coefficients are normalised to 1 and
-1 (instead of the more commdh normalisationt1/1/2). Then the varianc&ar(Z|N # 0) = 1, regardless of the
resolution level of the normalised coefficiefit We propose a Bayesian shrinkage and threshold proced8exiion 3.



3 A Bayesian threshold scheme

The preliminary algorithm of Section 2.2 adopts one of thailable threshold or shrinkage procedures in Step 3. This
shrinkage procedure could also be Bayesian. Bayesianksigénrules, if carefully designed, can be a compromise
between the classical hard- and soft-thresholding rulegdedd, while hard thresholding is a discontinuous opearatio
possibly leading to instability and large variance in theute soft thresholding suffers from bias in large coeffit$e(?).

A good compromise requires that the shrinkage is boundeldifge coefficients; see Proposition 3. Bayesian shrinkage
also has excellent theoretical propertie®)( This section tailors a new Bayesian model specificallygiesd for Poisson
data. This Bayesian model has the following properties.

1. Itis constructed within the framework of conditioning &1 ,, the total number of counts that contribute to wavelet
coefficientlV; ,, at scalej and locatior¥.

2. Inspired by similar approaches in wavelet denoisiPi®f?|, the proposed prior model for the noise-free wavelet
coefficients is anixtureof a point mass at zero and a continuous density. A point ntas=ra models theparsity
of a vector a wavelet coefficients with lots of zeros.

3. Inthe literature, prior models are specified directly @avelet coefficients. In our approach, however, the prior for
the non-zero coefficients is specified indirectly by a modetlieoriginal data intensitiesThe prior model for the
significant (i.e., non-zero) wavelet coefficients followsa second step, as a result of taking linear combinations of
the intensities; see Section 3.1. This approach is a gésetiah of the multiscale likelihood metho@)(to wavelet
families beyond Haar wavelets.

4. Although the prior model is specified in terms of the intéas, we demonstrate that careful design of this model
allows all computations to be performed in the wavelet domai

Since this paper adopts a mixture model, computation of tstepior distribution requires two applications of Bayes’
rule: once for the computation of the mixture parametetedal*, and a second time for the computation of the posterior
distribution under the assumption that a coefficient isifigcant. Section 3.1 presents the full prior model. Sectidh 3
computes the posterior distribution and posterior mixpagameter. Special attention is paid to the posterior madn a
median, since these values can be used as shrinkage ruleslelnto approximate the posterior median, we also need
the posterior variance. As explained in Section 3.2, its matation is slightly more complicated than for the posterio
mean. In order to compute the posterior values, we also nega@ssions for the marginal probabilities, discussed in
Section 3.3. The expressions for the marginal distribgtiaiso appear in a threshold based on Bayes factors (marginal
likelihood ratios). Section 3.4 proves that the posterieamleads to bounded shrinkage. Finally, Sections 3.5 @&hd 3.
provide empirical procedures to estimate the hyperparnsef the model, i.e., the prior mixture (or sparsity) paggen

p and the parameter defined below.

3.1 Prior model for relative intensities

As before, we concentrate on a single wavelet coefficienigive denote byl’, thereby omitting the indicegfor scale
andk for location, orl for its position in the wavelet transform matrix. This wastetoefficient can be written as a linear

combination of observationX: W = 377, v, X;. We defineN = 77, X; andZ = & = —= - 371 7:X:. By ¢

we denote the expected valuesf conditioned onV. Thus¢ = E(Z|p, N) = VN - _I_, vipi- The dependence af
on p is now explicitly specified, as in our Bayesian formulatibe tomponents g become random variables with their
own prior, specified later.

We denote by the prior probability of a coefficient having a non-zero eefsee value:

p=P(C#0|N). (6)

This valuep is a model parameter. An empirical method for chooginig presented after we calculate the marginal
probabilities for the observed coefficients. §et 1 — p. It is reasonable to assume that the eéng 0} is independent
of N.



For ¢-values away from zero, we assume that the relative iniessibme from the followindpirichlet distribution
with parameter vectat whereA = "7 a;:

JolplC £0) = % Lo, ™)
i= vi=1

For symmetry, there is no reason to assume that the prigr; @ different from the prior orp;, so we can take all
parameters; equal to a single.

It has been showr?] that a linear combination such a8V = /N >_7_, ~ip; of a Dirichlet vector has a B-spline
density. The knots are i, and have multiplicityy;. If not all a; are integer, the density becomes a so-called generalised
B-spline (). Both for B-splines and generalised B-splines, theretexiadrature formulae to find integrals, mean values,
etc., but we will use a simple normal approximation, basetherfollowing results for mean and variance.

Lemma 2 Writing o;; = a;/A, the mean and variance of a noise-free wavelet coefficiemtder the prior specified in
equation (7) satisfy:

E(C¢ #0,N)

\/N' Z%ai (8)
i=1
= 0 if all a; = 1/r are equal.

, 2
Z Vi O — <Z %'Oéz') €)
i=1

Var(C[¢ # 0, N)

‘2+

= Z v; if all «; are equal.

The prior model for significant wavelet coefficients is apgneately normal, where, according to Lemma 2, the variance
depends on the hyperparametei his way, the proposed model for the original intensitias the same descriptive power
as a normal model specified directly for the wavelet coeffilsie Moreover, as we are working within the framework of
conditioning on/V, the variance also depends &h As illustrated in Proposition 3, this feature undoes trendiracks of

a normal prior compared to a heavy tailed prior on waveleffuients (?).

3.2 Posterior distributions

The conditional probability ofX given p and N is multinomial. The Dirichlet distribution is a conjugatéqr for the
multinomial distribution ?). This means that the posterior denst‘X(pkc, ¢ # 0) is again a Dirichlet distribution.
The posterior parameter vectordst .

As a consequence, the posterior denﬁq}y(q:c, ¢ # 0) of a non-zerq is again a (generalised) B-spline function
with knots in; and multiplicitya; + z;. Since the observations are always integers, this posterior density is still a
classical (i.e., not generalised) B-spline if the priorsignf. (¢|¢ # 0) is a classical spline.

The posterior distribution of the noise-free valpiean be written as:

Fayx (Clz) = P(C# 0| X =) - F x (Cle, ¢ # 0) + P(( = 0| X = z) - I+ (C), (10)

with I'z+(x) the indicator function on the positive real numbers (inahgd).
The posterior probability* of a noise-free coefficiert being non-zero follows from:

—P((#0|X =2) = PXmefo,N) (11)

PO Py (@l £0,N)




This expression uses the values of the marginal proba&sifty (x|¢ = 0, N) andPx (x|¢ # 0, N). The marginal under
¢ # Ois fixed by the priotf,(p|¢ # 0) and the multinomial conditional probabilifyx (z|p,( # 0, N) = Px (x|p, N).
The same multinomial conditional probability applies unge= 0, but the priorf,(p|¢ = 0) has not been specified yet.
We now use this freedom to compute the postesiobased on the single wavelet coefficighinstead of the whole set
of observedX, i.e., we wanp* to be equal to:

hS!

pr=P((#0[Z=2N)=

ST (12)
|

Py (
p+q'P;(zg7éo,N)

Thus, we want the Bayes factor (marginal likelihood rat@)the observed in expression (11) to be such that it depends
onz = \/—% > i_1 viz; only. The following proposition ensures that this is poksib

Proposition 2 Suppose that we have a Dirichlet model (7) for joint relatimnsitiesp under the hypothesis that the
corresponding noise-free wavelet coefficient is non-zexg,under the hypothesis that= vVN 3, v;p; # 0.

Then there exists a prior model for these joint relative msigesp under the hypothesis that the corresponding noise-
free wavelet coefficient equals zero, i.e., under the hysidithat{ = 0, such that the Bayes factor (i.e., the likelihood
ratio of both hypotheses) in the observatianslepends only or through the empirical (observed) wavelet coefficient

2= (1/VN) X, viwi.

This property is useful for two reasons. First, it is morevarient and intuitive to construct a model B (z|¢ = 0, N)
than forPx (z|¢ = 0, N). In particular, it is easy to construct a continuous, norrapproximation for the probability
function of the univariate (discrete) varialife Second, it enables us to perform all the computationgfdam the wavelet
domain.

In order to perform Bayesian shrinkage, we need expres$fiorike posterior mean and variance. For the posterior
mean, we have the following result:

Lemma 3 Consider a vector of Poisson counX with relative intensitiegp that have a mixture distribution of a point
mass and a joint Dirichlet prior as specified in expressioh (Zssuming that the componentsof the vector of prior
hyperparametera are equal, the posterior expected value for a noise-freeatedcoefficient = v N > vipi,equals

N
N+ A

E(|Z,N)=P((#0|Z,N) - A (13)

The posterior variance is a bit more complicated. It has dnefof expression (9), with; = (a; + X;)/(A + N).
Even if all priora; are equal, the posterior values®f are no longer equal. Hence, unlike in the proof of Lemma 2, the
first vanishing moment of the dual wavelet is no longer sugfitito eliminate all dependence on individué/ls. As a
consequence, the posterior variahee(¢| X , ¢ # 0) is not necessarily equal ¥ar(¢|Z,{ # 0, N).

From posterior mean and variance, and using a normal appatixin for the posterior densitﬁ<|X(§|m,C #0)
(which is a spline or generalised spline function), it isgbke to derive thgosterior median Since for small observed
coefficientsz, the posterior mixture* is much smaller thai/2, this posterior median must be exactly zero. A posterior
median therefore leads to a threshold sche®e This threshold erases small posterior means and therkfads to a
smoother reconstruction.

3.3 Marginal probabilities

The marginal probability functions oK and Z already appeared in expressions (11) and (12) for the catipatof
posterior probabilities. They are also relevant to theestion of the model’s parameters in an empirical Bayes aabro
We also need the marginal distribution8f(¢ # 0, N) to fill in the still open details of the model fgr= 0.



Lemma 4 If X|(N, p) has a multinomial distribution and the relative intensitjg( # 0 have a joint Dirichlet density,
with hyperparametera andA = ""_, a;, then

r

Px (x|¢ #0,N) =T(N +1)-T(A) - [[T(a; + 2:) qu (z; +1)T

=1

T'(A+ N)) (14)

If all a; = 1, this, remarkably, reduces to a uniform distribution oncalhfigurationse (note that the conditional
distribution is multinomial). The subsequent expressimnsnarginal mean and variance include this special case of a
uniform distribution on the discrete simplgx}.

Lemma 4 gives an expression for one of the marginal prohisilihat appear in the right-hand side of Expression
(112). It also leads to the forthcoming Lemma 5 about the nmaitgirobabilities in Expression (12). In Section 3.2, we
required that the two Expressions (11) and (12)foare equal. This leads to a condition on the marginal protbiaisil
Px (z|¢ =0,N), andPz(z|¢ = 0, N), which have not been specified yet. As explained in Sectigni3is interesting
to specify the marginal in the wavelet domaiz (z|¢ = 0, N) first, and let the marginaPx (z|¢ = 0, N) follow
from the equality of the two expressions faf. We specify the marginaP;(z|¢ = 0, V), after we state a result for

P4([C # 0, N).

Lemma 5 The mean and variance of a normalised empirical waveletfioiefit, given that its noise-free value is non-
zero, satisfyF(Z|( # 0,N) = N - >_!_, vi«;, which is zero if; = 1/r, and

Var(Z|¢ #0,N) = (N + A)/N - Var(¢|¢ # 0, N).

Remark 1 Note that the Bayesian shrinkage factor from (13) for nom-zeefficientsN/(INV + A), equals the ratio of
the prior and marginal variances, just as in the case of a sfitwo normals.

We now specify the marginal probability of coefficients tdatnot carry information, i.e., for which = 0. The idea
is to extend a Bayes factor that holds for typical, specifites of the parameteys to all situations. More precisely,
we require that the variance of the wavelet coefficient ugder 0 is well approximated by the variance in one specific
instance of that hypothesis, namely the case of constamtdities:

1<
Var(Z|¢ =0, N) = Var(Z|p; = 1/r,Vi, N) = - 2
ar(ZIC = 0, N) &= Var(Zlpu = 1/ ¥i, N) = 3 o
On the other hand, if alt, = 1/r, a combination of Lemmata 2 and 5 yields for significant cogfits that

N A 1
Var(Z|¢ #0,N) = ~— Z%,

14+4
SO we can write that
N+ A
Var(Z|¢ # 0,N) ~ -Var(Z|¢ =0, N). (15)
1+ A
The approximation of the general by a specific case now ntesuas taequirethat the Bayes factor equals the ratio:

Pz(2[C# 0. N) — ¢o,(2)

whereg,, stands for the normal density function with zero mean amtisted deviatiowr, ando; = /(N + A)/(1 + A)oy
In these expressionsy = (1/r) > _i_, 77




Remark 2 This choice in terms of the Bayes factor fi¥¢g z|¢ = 0, V) for all possiblez. This specification is necessary
in the computation of the posterior probability. It is, however, unlikely that the marginal probabiliti&s (2| = 0, N)
sum to one. In order to remedy this problem, it is in principézessary to allow a Bayes factor different from (16) for (at
least) one value df, for instance, the value = 0 if that value has a non-zero probability.

In practice,Pz(z|¢ = 0, N) is not an exact normal density, so Expression (15) for thiamaes is still an approxima-
tion. The computation of the posterior probability however relies on Bayes factors only: under the now fullycéfjesl
model, those calculations are exact.

Remark 3 This section describes marginal probabilities, i.e., lilkeods of a single wavelet coefficientLikewise, the
Bayesian approach finds posterior probabilities in evergfioient separately. Since the wavelets we use are noelimit
to the Haar basis, adjacent coefficients are mutually depatdo the overall (full) likelihood is not just the prodwdt
the individual likelihoods in every coefficient. The propdalgorithm in this paper processes every coefficient sephr
Such an approach is also referred to as a pseudo-likelihood.

3.4 Thresholds and bounded shrinkage

Given the expressions for the Bayes factor, we have all graehts for the posterior probabilipy. We can compute the
threshold valuégr for which |z| > Ogr implies thatp* > 1/2. In other words, coefficients above this threshold, are
qualified by the model as ‘more likely signal than noise’. Sthireshold equals:

B N+ A g |IN+A
GBF* 2N_110g<p 1+A> +00- (17)

The threshold induced by a posterior median can be found bjngoF x (0|z) = 1/2. Since the complete posterior
distribution in expression (10) depends on all the obs@amwate, and not just on the coefficient the threshold is not a
constant for a given coefficient, but in any case, it is onilytgly larger than the Bayes factor threshélg.

It is interesting to investigate how large coefficients amated in the given model. In particular, we prove that
shrinkage is bounded for given, finite threshold values.sT#iin contrast to the case of normal noise in combination
with a Gaussian prior for significant coefficients: such a sidelads to undesirable unbounded shrinkage for large input
coefficients.

Proposition 3 Using the posterior mean as a shrinkage rule for the mixturerpnodel with point mass i = 0 and a
joint Dirichlet away from zero, as specified in (7) and (18gre exists a constanit < oo such that forN — oo, i.e. for
GBF — 00,

|2~ E(C|Z,N)| < C - . (18)

This proposition shows that, for any value/@f sufficiently significant values of have bounded shrinkage and there
exists an upper bound independentf Actually, the concept of conditional variance stabiligatturns a situation
without bounded shrinkage (normal prior with normal nois¢) a more favourable situation with bounded shrinkage, as
for heavy tailed priors?).

3.5 Empirical Bayes

The expressions for marginal variances also allow for themgdation of the marginal likelihood of paramegerthe
probability for a coefficient being significant. This hyparameter has to be estimated. We assume that this parameter i
scale dependent, and denote the value at gchiep;. If we write o5 = Var(Z|¢ # 0, N;x) andoy ; , = Var(Z|¢ =

0, N; ), and use the same model details as described in Section&@mexpress the likelihood jrj for an observed
vector of normalised coefficients as:

27
log L(p;) = Y 108 (pj - bor,0 (z38) + (1 = 1)) - b (258)) -
k=1

9



Note thatr; ; , depends omV; i, so the likelihood expression is different for every obsereoefficient.

The values foro, are independent of the observad ., and could be estimated from the data using the Median
Absolute Deviation (MAD). As mentioned before, this worlaisfactorily on fine scales, but MAD is not sufficiently
robust on coarse scales. Therefore, we use the exact exprésss, in terms of the wavelet transform coefficients

At fine scalesp; is generally quite small, and it might be difficult to capttine few significant coefficients at those
fine scales, leading tp; = 0. We therefore require that the posterior median threshuddilsl be below the universal
threshold ®), i.e. P(¢ > 0|Z = 6Ouniv, N) > 1/2. This implies a condition on the posterior probabiliy for an
observation equal to the universal threshold, Il = 0|Z = Ouniv, N) < 1/2. Sinceb,niv = v2lognog is a large
value, the probability?({ < 0|Z = Ouniv, V) is small and both conditions are practically equal. Elationeof the latter
condition leads tp > C/(C + n?), whereC = o /00 andD = 1 — 1/C?. This minimum value for the priop
therefore also depends, through; ., on the observed; ;. in each coefficient.

3.6 Estimation of the Dirichlet parameter vector

The relative intensitiep; »,; involved in the computation of a coefficieqt, at scalej and locationt can be expressed
as a combination of the relative intensities for the singlefficient at the coarsest scgle= 0:

Piki =000/ D P0.0i- (19)

’L‘GI]'JC
This implies that the whole prior is fully specified by the nebtbr the relative intensities at coarsest scale. In palgic
po,o0 ~ Dirichlet(a) = pj x ~ Dirichlet(az, , ).

This can be verified by constructing a vector of independearh@a distributed variablég” ~ T'(\, a) (for some)),
such thaipg,o 4 V /> Viandpjk 4 Vz./ sz Vi The parameter vectar is therefore scale invariant. If al; are
assumed to be equal, then this single parametam be estimated from the expression for the marginal vegiafi the
observationsy;:

a(A—a)

A2(A+1)

At the coarsest scale, we can assume that indegd0. Using the sample variance from the input data, we can then
construct the following estimator far.

Var(X;|¢ # 0, N) = N(N + A)Var(pi|¢ # 0) = N(N + A)

N2%(n —1) —n?5?
n362 — Nn(n—1)

a=

In this expressiom; is the sample sizeY is the observed sum of counts aftlis the estimated marginal variance.

This parameter vectat is thus closely related to the variance of the underlyingnsity function. If this function
shows clear heterogeneous behaviour, one could considar-aanstant vectot and estimate it from the variances of
different subsets of the input sample.

4 Simulations

As in earlier papersA?), we ran 100 simulations on low and high intensity versiohf@or commonly used test signals,
called ‘Bumps’, 'Blocks’, ‘Heavisine’, and ‘Doppler?). These four intensity curvegwere rescaled and shifted along
the y-axis, such thatnax f = 1/min f = M, with M = 128 for the high intensity version andl/ = 8 for the low
intensity runs. We consider = 1024 equidistant points on every intensity curve.

The simulations were run with a non-decimated wavelet foans For the results in Table 1, the Daubechies least
asymmetric orthogonal wavelets (also known as symmlets$) #0 vanishing moments were used. Table 2 repeats the
simulations, this time with Daubechies orthogonal bastf Wivanishing moments, and illustrates that the good perfor
mance of our CVS-method (conditional variance stabilisgtis independent of the particular wavelet transform used

10



[ Rounded mean values o, 000 - | A — A||2/|| A1 |
[ Symmlet, 10 vanishing moments |

Heavisine|| Blocks Bumps Doppler
Amax 8 128 8 [128 8 [128] 8 [128
Anscombe 55| 6 219| 30 || 2208 | 163 || 114 | 13

Fisz-Wav., Cycle Spin|| 29
BMSMS 44

CVS, Cycle Spin 28
CVS, non-decim. W.T{| 30
Bayesian CVS 42

194 | 30 || 1082 | 154 | 90 | 13
135 7 1824 | 184 || 147 | 20
196 | 30 || 910 | 118 92 | 12
203 | 31 || 930 | 119 98 | 13
234 | 28 || 1142 | 126 114| 10

OO U1 N| O

Table 1: Standardised output Mean Average Squared ErrorSi)Avalues (mean over 100 simulations, average over
n = 1024 observations) for low and high intensity versions (peadrisities 8 and 128) of four test signals. The Anscombe
normalisation, Cycled Spinned Haar-Fisz method with walvetnoothing (abbreviated as Fisz-Wav.) and the Bayesian
MultiScale Model Shrinkage (BMSMS) are three competitassdssed extensively in the main text. The Cycle Spin

implementation of our method, CVS, as well as non-decimatgdementations with and without Bayesian shrinkage

are three variants of the new method we propose. All methrdspt the BMSMS use Daubechies Least Asymmetric

orthogonal wavelets (‘symmlets’) with 10 vanishing mongenAll non-Bayesian procedures adopt the exact level de-
pendent minimum ASE thresholds, which explains why CVS auitiBayes sometimes outperforms the empirical Bayes
algorithm.

The method of Bayesian Multiscale Models (BMSMShrinR) (s, however, inherently based on Haar wavelets. For
all methods except the BMSMS and the Bayesian CVS, we applylsilevel-dependent thresholds with the exact min-
imum average squared error. In practical applicationsh suthreshold has to be approximated, e.g., using SURE or
cross validation. The use of exact minimum ASE (averagereguerror) thresholds explains the relative poor results fo
the Bayesian thresholding, especially on low intensityalg. Nevertheless, the Bayesian model succeeds veryrwell i
selecting the significant coefficients. For high intensignals, Bayesian shrinkage may even outperform minimum ASE
thresholding, because Bayesian shrinkage rules offenaitian between kill and keep which is smoother than the hard
or soft thresholding rules.

All simulations can be reproduced using Matlab routinefi@recently upgraded package PiefL&@) (vhich can be
downloaded fromwwy. cs. kul euven. ac. be/ ~maart en/ sof t war e/ pi ef ab. ht m .

A first important competitor for the method proposed in thaper is the normalisation procedure for Poisson data by
Anscombe ??). The Anscombe procedure is quite straightforward:

1. For every observed count, definey; = /x; + ¢, with some constant. For asymptotic reasons, this constant is
generally given the value = 3/8, although simulations indicate that= 0 might be an interesting alternative for
small intensities.

2. Apply any wavelet (or other) smoothing technique for &ideinormal data to the vectay. Call j; the output for
thei-th data point. The quantity; estimates:; = EY;.

3. Estimate the Poisson intensity of the observation; as)?i = )Tl* + Var[v€ + c]«f ~ Poissor@);-*)] where

~

N =2 —c.The termVar[\/€ + ¢ ]5 ~ Poissor(l)?i*)] corrects for the bias due to squaring an estimator. Indeed,
if u; = EY;, andX; = Y? — ¢, then\; = EX; = E(Y? —¢) = EY? — ¢ = p? + Var(V;) — c.

Anscombe’s approach has at least two disadvantages: ficstnsiders smoothness ¢ff rather than smoothness ¢f
itself. Second, taking square roots makes bumps less pemtagainst background noise. CVS outperformed Anscombe
in all of our runs. The same conclusions hold for other tydagavelets and also if one compares the Bayesian algorithm
proposed in this paper with the Bayesshrink procedure [m@gpby?.
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[ Rounded mean values o, 000 - | A — A||2/|| A1 |
[ Daubechies wavelets, 3 vanishing moments |

Heavisine|| Blocks Bumps Doppler
Amax 8 128 8 [128 8 [128] 8 [128
Anscombe 55| 6 211 | 26 || 2190| 151 || 132 | 15

Fisz-Wav., Cycle Spin|| 31
BMSMS 44

CVS, Cycle Spin 31
CVS, non-decim. W.T|| 33
Bayesian CVS 39

182 | 26 || 1071 | 142 106 | 16
135 7 1824 | 184 || 147 | 20
185| 26 || 961 | 124 | 107 | 15
193 | 26 || 985 | 125 114 | 16
216 | 21 || 1212 123 || 131| 12

g O 01 N| O

Table 2: Standardised output Mean Average Squared ErrorSE)Avalues (mean over 100 simulations, average over
n = 1024 observations) for low and high intensity versions (pea&risities 8 and 128) of four test signals. All methods
except the BMSMS use Daubechies orthogonal wavelets widn&king moments.

The second competitor, Haar-Fisz normalisation with wetv&noothing, proceeds as followa:(

Step 1. Apply a Haar-Fisz (HF) decomposition. This is edeiveto a Haar transform, followed by a Conditional Variance
Stabilisation applied to the Haar transform coefficients.

Step 2. To these HF coefficients, apply an inverse Haar wamsf

Step 3. Apply any forward wavelet transform, using the basid filters that best match with the signal at hand. (In our
comparative simulation studies, we used the same filters thg icorresponding CVS method.)

Step 4. Apply any smoothing (threshold, shrinkage) teaafgr wavelet coefficients with additive, normal noise.
Step 5. Apply an inverse wavelet transform, followed by aviand Haar transform

Step 6. Reconstruct the data with an inverse Haar-Fiszftransi.e., undo the variance stabilisation and apply aelisg
Haar transform.

The separation of stabilisation from the actual multispatecessing creates a few disadvantages:

1. A separate multiscale preprocessing leads to a globatidigh which is slightly more computationally complex
than doing everything in one single decomposition.

2. Itis unclear whether the underlying signal keeps the ssim@othness characteristics after applying the Haar-like
preprocessing. Also, upon reconstruction, the undoing@fiormalisation happens in a Haar-basis, and therefore
may partly destroy the initial smoothness of the reconsitn®mbtained from the inverse wavelet transform with
non-Haar filters: although this last step probably has leg@ct than a threshold, it does operate on coefficients in
a Haar-basis, so the output will show some Haar-like atsfac

3. Afully redundant (non-decimated) implementation of aHBisz method is impossible. A cycle spinning version
of the actual wavelet transform is of course straightfodyaut the Haar-Fisz variance stabilisation is intrindical
based on a decimated decomposition. Indeed, a non-dedHage-Fisz decomposition is very unlikely to be an
exact redundant Haar decomposition of any signal. Any rsiroation from this Haar-Fisz decomposition using
an inverse redundant Haar transform (Step 2 of the algorihove) is therefore an irreversible process, unless
the reconstruction is based on only one of the cycles. Indhsg, there is no point in using a redundant Haar-
Fisz transform in the first place. So, the only way to perforeyele-spinning Haar-Fisz variance stabilisation
is by averaging all possible cycles explicitly. Althougmé& consuming, such an external cycle spinning reduces
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Figure 1: Left: The web domain hits data. Right: Estimatiéthe weekly expected number of hits, using a decimated
wavelet transform, Bayesian shrinkage and CDF 2,2 wavekssh

artifacts from the post-processing step in a Haar basis.riitiple, the cycles are found by shifting theinput
observations ovek positions, wheré = 1, ..., n. The number of possible shifts therefore equals the datmwec
length. Experiments?) indicate that in practice some 50 shifts are sufficient tnaee most of the artifacts. We
adopted this rule of thumb in our simulations when applyindSr Haar-Fisz procedures with explicit (external)
cycle spinning. We also included a non-decimated impleateant of the CVS algorithm (sometimes referred to as
internal cycle spinning).

The third competitor is the Bayesian multiscale likelihanddel in (7). The two models coincide when Bayesian
CVS is applied to the Haar transform. The only essentia¢diffice is the choice of the hyperparameters, since the model
are specified in a different way. This is confirmed in simalasi, where, for the special case of Haar wavelets, the two
variants show comparable performance. Our method, howksasrthe important advantage of being applicable to any
type of wavelet basis, via a classical wavelet analysis,edkas to second generation wavelets through a lifting sehem

5 An application: Hits on an internet domain

A real data example (also available in the software pack#fedb used in the simulations) comes from the weekly web
statistics on my personal web site. The series has beemugisimice the first week of February 1997 and it shows some
remarkable properties; see Figure 1. The two peaks (iretloatth a 1 and 2 in the figure) are due to announcements
in news groups. The data of week 46 are missing (the softvegriaced it by 0). A human viewer also immediately
recognises the annual “Christmas dips”. The smoothingrilgo finds those dips modest or even insignificant, as we
discuss below, since it cannot take their annual charat@riccount (as a human viewer does). Another striking, &hd y
unexplained, feature appears to be the sudden increaségbea tevel after Christmas, especially in January 1999,120
2002 and also 2003. In some years (2001, 2002, and espe2ilB), that initial gain was (partially) lost after a few
months. Since the underlying intensity seems to have disagyus changes, a wavelet decompaosition is an appropriate
tool for the analysis of these data.

The example illustrates that the immediate applicatione@method presented in this paper are not strictly limited t
Poisson data. Indeed, the weekly number of hits on an intdoreain is certainly not Poisson distributed: it countsgve
attempt to download any file including images, text and souisitors usually cause more than one hit. If we cEllthe
number of hits in week, R; the number of visitors that week, aisgl,, the number of files downloaded by theth visitor
in weeki, we haveX; = Z,f;’l Si 1. We assume that the number of visitors is Poisson distribwttrdintensity A;. The
mean number of downloags;; and its corresponding varianeg, are supposed to be modestly varying functions of time
i. The averages; depends on, among other things, the number of files avaitableat domain.

We then haveE X; = \; pus; andVar(X;) = A202, + s (1%, + 0%;) . We want to estimat& X; and we assume that
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a%i < Mgi, as would be the case, for instanceSjf;, were Poisson with large mean, so thalr(X;) ~ < - EX;, for
some constant.

In order to capture the narrow peaks as much as possible, tWerapwavelet with narrow support: the biorthogonal
spline wavelet of Cohen, Daubechies and Feauveau with timmapand two dual vanishing moments. This basis (CDF
2,2) is well known in image processing (it is in the JPEG-28@hdard). The result in Figure 1(Right) follows from a
decimated Bayesian thresholding algorithm. The smootbirrge captures all characteristics that we discussed above
The piecewise linear CDF 2,2 basis functions are clearlgctdd in this output. We also point out that other wavelet
bases might not reconstruct the features so well, or evgrsskne of them. This illustrates the importance of the abilit
to incorporate variance stabilisation into any waveleidas

6 Conclusions and directions for further research

This paper introduced a novel framework for estimating titerisity curve of Poisson data with piecewise smoothly-
changing intensities. The key concept is the idea of camlitig on the sum of the observations involved in the computa-
tion of a wavelet coefficient. The proposed framework britogether the benefits from some existing procedures:

1. With the Anscombe preprocessing appro&htfie proposed method shares the ability to incorporatenawelet
transform.

2. From the Haar-Fisz normalisatio?) (it inherits the possibility of applying any threshold pealure for coefficients
with additive, homoscedastic noise.

3. Asin the Bayesian multiscale modé&)(the method can also be implemented in a translation iamaviay, and it
also has a Bayesian component.

The proposed method automatically adapts to situationswobl high intensities, and to data with areas of both low and
high intensities. Beside these properties, extensionrswaon-equidistant data, using the lifting scheme, isgittéor-
ward.

An important subject of further research is the consistemalysis of the proposed estimator. This analysis involves
a study of the maximum risk (i.e., expected MSE) over a fumctilass, typically Besov function bal8) (R), with
parameters, p, q, anda. For a formal definition of these function classes, we rafahe literature. A short overview
can be found ir?, pages 76-78. Important for this discussion is the factatfanction is in a Besov balB;y (R) if and
only if the sequence of its wavelet coefficients;, is in a corresponding Besov sequence lgl|,( k), meaning that

1
q

o 27
[wlis == | D275 wsal? <R, (20)
j=L k=1

1S

with 5 = a + 1/2 — 1/p. (The definition of the Besov sequence norm has to be slightidified if ¢ = co.) This
Besov sequence norm can be interpreted as a mathematicallédion of multiscale sparsity. Indeed, the inner sum is
the Z,-norm of the coefficients at a given scale. Small valueg, dfe.,p < 2 are of particular interest, since they favour
sparse sequences: isolated large coefficients contritileeid the overall,,-norm. The sequence of the level-dependent
¢, norms at all scales is then measured with a weiglitedorm. The weights are’??. Therefore, iff € By ,(R),
then the/,,-norms at fine scales (i.e., with growiiymust decay at least @(27#). Since the/,,-norm, withp < 2, is
dominated by the many small coefficients related to thewatsiwheref is smooth, this decay is related to the degree of
smoothness of the function between its singularities. dhiervation is similar to the case of smooth function€'th
whereq is related to the decay in the Fourier transform domain.
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Appendix: proofs

Proof of Lemma 1. The joint distribution of X7, ..., X,) conditional on/V is multinomial. Using the expressions for
mean and covariance of a multinomial vector, we WHYZ |N = n) = /n >.._, vip; and for the variance of given
N =n:

T T T 2
Var(Z|N = n) Z% pi(1—pi) — QZZ%%MJ > e - (Z%pi) for nn # 0.
=1 =1

i=1 j=1

Note thatVar(Z|N = n) does not depend amand both expressions only depend onrlativeintensities ofX;, not on
the absolute intensities. From this, we average over alagyo N to obtain the results of the lemma. O
Proof of Proposition 1. This proposition is an extension of a theorem by FRz §nd the proof is almost completely
similar. Referring to the paper by Fisz, the extension oflttmma 1 in that paper is trivial. Lemma 2 in that paper can
be extended towards more than two independent variablestiydé, = v, X; and¢; = —v; X, fori =2,...,r. Then
first consider; — &, then(&, — &) — &3 and so on. The proof of the actual theorem can be extendeddiately by
replacingm; — m. (in the notation of Fisz) by '_, ~;x; (our notation).
Proof of Lemma 2. These results follow from combining the expressions ip;|¢ # 0), Var(p;|¢ # 0), and
cov(pi, p;j|¢ # 0) in a Dirichlet model. If alloe; = 1/r, the first vanishing moment of the dual (analysis) wave®et (
page 241) annihilates this constant, thereby simplifyiregexpressions. O
Proof of Proposition 2. Suppose that the model is fully specified in terms of wavetsdfficientsz. In particular,
Py(2|¢ = 0,N) is given, and we state that for alf = (V*"~") possible configurations af which sum to givenV, and
for z=(1/V/N) > i vixi, the Bayes factor in terms af equals the Bayes factor in terms of the corresponding
Pz(2|¢ =0,N)/Pz(2|( #0,N) = Px(x|¢ =0,N)/Px (x|¢ # 0,N). This leads taK conditions onfp(p|¢ = 0),
one for each configuratian that sums up tav:

Pyz(2[¢ = 0,N)

In order to find a prior that satisfies these conditions, ondcctor instance writefp(p|¢ = 0) = Zle ek fr(p), for
some basis functionf; (p), and then solve a set &f linear equations in the coefficients.
Proof of Lemma 3. Since the posterior densiyﬁle(p|m, ¢ # 0) is a Dirichlet distribution, with parameter veciok- x,

we have forl = VN 3" ~;p; that

/,, folpIC = 0) - Px(xlp,N)dp = Px (x|¢ = 0,N) = Px (@|¢ #0,N).

- i + X
B(QX.¢#£0) = VN Y w4t
=1

And if all a; are equal, the first vanishing moment of the dual (analysisjelet (?, page 241) annihilates this constant,
reducing the expression to:

B(CIX.C#0) = NMZ% =

Since the right hand side only depends @nwe can equivalently write:E(¢|Z,{ # 0,N) = E({|X,{ # 0) =

N/(N + A) - Z, from which the lemma follows. O
Proof of Lemma 4. This is easy to verify, for instance by marginal = prior jor conditional / posterior, using the fact
that the posterior fop is also a Dirichlet distribution. O

Proof of Lemma 5. The proof follows from the rules of conditional expectatié-or the variance, this leads to:
Var(X;|¢ # 0, N) = Var(E(Xi|pi, ¢ # 0,N)) + E(Var(X;|pi, ¢ # 0, N)) = N(N + A) - Var(p;[¢ # 0, N),
and a similar result holds for the covarianeeyv(X;, X;|{ # 0,N) = N(N + A) - cov(p;, p;|¢ # 0,N). Combining

these results completes the proof. The computation of trennsdrivial. O
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Proof of Proposition 3. We have for the posterior mean:

1Z|. (21)

N A N
Z - B(C|Z,N)| = \zp*~ ‘

A A 1—p*) —— .
N+A Nra A0y
The value of|Z| is bounded by the normalisation factdf, i.e. |Z| < ||v]~VN, and at the same time, the factor
N/(N+A)tendstoonefolN — oo. As a consequence, the firsttermin (21) is bounded by a aansta(N+ A)- | Z| <

17l VN /(N + A) < |I7]loV/A/2. The second term in (21) is arbitrarily small for sufficierilyge values ofz|. The
condition that(1 — p*) - |z| < e leads to

This is satisfied if

2 2
zlqo exp(z) qo o o
2| gon p()Q1<exp 52 1220
€ poy € poy 2070¢

Solving the last inequality reduces to a quadratic forfxjnWe find that(1 — p*) - |z| < ef

N+A N+ A\? N+ A ¢ [N+A 1
> . 449 o2 -log [ 4/ log -
PNt (Nl) M e A VA i )

This expression shows the same asymptotic behaviour asayesBactor threshold (17), which is of smaller order than
the maximal value ofz| for a givenN. That maximum value depends linearly 8h This means that there exists a
constantC*, such that(l — p*) - |z| < €if |z] > C*0gp. The contribution of this second term to the total shrinkage
|Z — E((|Z, N)| is then bounded bynax(e, C*0pr), since one can never shrink more thaitself. O
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