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Abstract

This paper introduces a framework for nonlinear, multiscale decompositions of Poisson data that possess piecewise
smooth intensity curves. The key concept is conditioning onthe sum of the observations that are involved in the com-
putation of a given multiscale coefficient. Within this framework, most classical wavelet thresholding schemes for data
with additive, homoscedastic noise can be used. Any family of wavelet transforms (orthogonal, biorthogonal, second
generation) can be incorporated into this framework. Our second contribution is to propose a Bayesian shrinkage ap-
proach with an original prior for coefficients of this decomposition. As such, the method combines the advantages of
the Haar-Fisz transform with wavelet smoothing and (Bayesian) Multiscale Likelihood models, with additional benefits,
such as extendibility towards arbitrary wavelet families.Simulations show an important reduction in average squareder-
ror of the output, compared to the present techniques of Anscombe or Fisz variance stabilisation or Multiscale Likelihood
Modelling.
Keywords: Wavelet, smoothing, Poisson count data, Bayesian estimation, Dirichlet

1 Introduction

Wavelet thresholding has proven to be a successful method innon-parametric smoothing or estimation of piecewise
smooth functions. Such intermittent data occur in a wide variety of applications, such as medical signals, biology, astron-
omy, geology, physics and all kinds of electrical signals. The most visual application is probably image denoising, where
the edges correspond to the discontinuities (or jumps). Classical linear smoothing techniques, e.g. using Fourier or kernel
estimators, are doomed to fail: the output shows Gibbs phenomena and/or an often inacceptable bias — blur in image
processing terminology — near the jumps. A good smoothing algorithm should be able to locate (directly, or indirectly,
as in the case of wavelet thresholding) the points of discontinuity, since they carry the essential information of the data
(signal, image). The combination of a wavelet transform, linear in itself, with the nonlinear threshold method is a fastand
efficient approach for catching the singularities.

The subject of this paper is Poisson data. More specifically,we want to estimate, for a given vector of Poisson count
observations, the corresponding vector of Poisson intensities. Poisson noise has a multiplicative aspect. This means: the
more intense the signal is, the more variable are the fluctuations (the noise). This type of noise results from counting
processes of ‘particles’ which independently hit the observer. Typical examples of such Poisson processes in practice
are web statistics (number of hits on a web page), (internet)traffic data, observations in astronomy, and tomographical
imaging. This paper includes a discussion of such a real dataexample. The main difficulty we address is that Poisson
noise with time varying intensity cannot be homoscedastic,since the variance equals the expected value.

Many wavelet thresholding techniques assume a constant noise behaviour: noise is typically supposed to be additive,
homoscedastic, and uncorrelated. Any orthogonal transform of uncorrelated, homoscedastic noise is again uncorrelated
and homoscedastic. Homoscedastic wavelet coefficients aredesirable for thresholding, since a single threshold cannot be
optimal for both a coefficient subject to noise with a large variance and another coefficient where the noise has a small
variance. The basic idea behind thresholding issparsity, i.e., a wavelet transform maps a (digital) signal onto a setof
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waveletcoefficients. The classical additive model (not used in this paper) assumes that the inputy = f + η is a vector
of noisy observations from unknown function valuesf plus noiseη. The observed (or empirical) wavelet coefficients
inherit the additive model, i.e.,w = v + ω. Most noise-free valuesv are close to zero, while only a limited subset
of large coefficients carries the essential information. Since noiseω is spread out evenly (at least if the observations
are statistically independent and homoscedastic), a smooth reconstruction of the underlying signal can be obtained ifall
coefficients with magnitude below a certainthresholdvalue are replaced by zero. The multiresolution nature of a wavelet
transform offers a solution for data with homoscedastic butcorrelated noise: they are mapped onto coefficients that are
homoscedastic within each resolution, i.e., coefficients that correspond to basis functions with equal support width,have
equal variance.

The concept of thresholding is appropriate for any noise distribution with finite variance. Most threshold assessment
procedures however have been designed with additive, normal noise in mind. The normal density is stable under a linear
transform: the wavelet coefficients are again normally distributed.

Unlike the model of observations with additive, jointly normal noise, the multiplicative Poisson model is not stable
under a linear transform, such as a wavelet transform: wavelet coefficients are not Poisson distributed. A straightforward
method to deal with this problem is a preprocessing, normalising step. Examples of this strategy are the Anscombe
transformation (??) and the Fisz normalisation (??). Most papers (????) use the simple Haar transform. These specific
properties allow for an exact closed form of the scaling coefficient densities. This exact expression can be used in a
general Bayesian multiscale model (??). A major theme of this paper is to extend ideas from Haar-Fisz decompositions
(?) and Bayesian Multiscale models (??) to any family of wavelet transforms. The proposed procedure can thus deal with
any degree of smoothness in between sharp transitions, justas in classical wavelet shrinkage.

A third direction of existing research is an asymptotic study of the applicability of classical wavelet thresholding
when the Poisson intensities tend to infinity, for example, bursts against a homogeneous background. This paper however
considers signals with low intensities as well as signals with a mixture of both low-count and high-count intervals.

Other methods apply general wavelet domain filtering (such as shrinkage and modulation) based on unbiased variance
estimation in the wavelet domain (???, page 136–137). Instead of filtering wavelet coefficients, some methods look for a
generalisation of the universal threshold to Poisson data (?) or wider classes of distributions (?).

For a more complete overview of the literature, we refer to anextensive comparative study of several existing methods
in ?.

This paper is organised as follows: Section 2 introduces a conditional variance stabilisation. This is extended to
an empirical Bayesian shrinkage approach in Section 3. A simulation study is presented in Section 4. This simulation
compares the proposed method with the normalisations by Anscombe (?) and Fisz (?), and with the Bayesian multiscale
likelihood model (?). These methods are considered among the state-of-the-artof the currently available methods (?).
The proposed method is found to have a superior performance in most settings.

2 The proposed conditional variance stabilisation (CVS)

2.1 Definitions

SupposeX is a vector ofn Poisson observationsXi with intensitiesλ = [λi]i=1...n. The wavelet transform,W , of these
data is given by

W = W̃X,

whereW̃ = [Wij ]i,j=1,...,n denotes then× n forward wavelet transform matrix.
Any wavelet coefficientWj,k at scalej and locationk can be written as a linear combination of input data:

Wj,k =
∑

i∈Ij,k

γj,k,iXi,

whereIj,k is the set of indices with nonzero entriesγj,k,i 6= 0 in the wavelet transform matrix̃W on the row corresponding
to the coefficientWj,k. We letrj,k = #Ij,k be the number of these non-zero entries. In most applications, and certainly
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in the case of classical wavelet transforms on equispaced data,rj,k only depends on scalej and not on locationk within
that scale. Note that the doubley (j, k) indexed wavelet coefficients can be stored in single vectorof lengthn. The
wavelet coefficientsWj,k are clearly heteroscedastic. For Poisson data, we can look for a normalisation factor, so that the
variances of the normalised coefficients are approximatelyconstant and independent of the input intensities. We would
like the coefficients with noise-free value equal to zero, i.e., the negligible ones, to have constant variances, so thatthey
can be removed with a single threshold.

We introduce anormalisation factorNj,k:

Nj,k =
∑

i∈Ij,k

Xi.

It is clear thatNj,k is Poisson distributed with intensityλj,k, equal toλj,k =
∑

i∈Ij,k
λi. We then define thenormalised

or variance stabilisedwavelet coefficientZj,k as:

Zj,k =





Wj,k√
Nj,k

=

∑
i∈Ij,k

γj,k,iXi√∑
i∈Ij,k

Xi

if Nj,k 6= 0

0 if Nj,k = 0

.

When applied to a Haar transform, this variance stabilisation reduces to the Haar-Fisz decomposition (?). Our first
intention is to make this variance stabilisation method applicable to any wavelet basis function.

The remainder of this section concentrates on a single wavelet coefficient, and therefore we omit the subscriptsj andk
for notational convenience, and writeW,N,Z, λ to indicate, respectively, a wavelet coefficient’s value, its normalisation
factor, its normalised value and the intensity of its normalisation factor. The cardinality of the set of non-zero entries in
the wavelet transform matrix is denoted byr and we renumber these entries such thatI = {1, . . . , r}.

We define for each wavelet coefficient therelative intensitiesρi of inputXi, with i ∈ I as:

ρi = λi/λ,

whereλ =
∑

i∈Ij,k
λi.

The variance stabilisation property of this normalisationis formalised in the following lemma. All proofs follow in an
appendix.

Lemma 1 The variance stabilised wavelet coefficientZ has, conditional on the normalisation factorN being non-zero,
the following moments:

E(Z|N 6= 0) = E
(√

N |N 6= 0
)( r∑

i=1

γiρi

)
, (1)

Var(Z|N 6= 0) =

r∑

i=1

γ2
i ρi −

(
r∑

i=1

γiρi

)2

+ V
(√

N |N 6= 0
)( r∑

i=1

γiρi

)2

, (2)

E(Z2|N 6= 0) =

r∑

i=1

γ2
i ρi −

(
r∑

i=1

γiρi

)2

+
λ

1− e−λ

(
r∑

i=1

γiρi

)2

. (3)

In the expression of the conditional varianceVar(Z|N 6= 0), the only factor depending on the absolute intensitiesλi is
Var(

√
N |N 6= 0). N is Poisson distributed with intensityλ =

∑r

i=1
λi. It is well known that, forλ → ∞, the variance

of the square root of a Poisson count,N , converges quickly to1/4. This means thatVar(Z|N 6= 0) is nearly independent
of the absolute intensitiesλi. This is an interesting observation, since it motivates theapplication of a threshold procedure
on the normalised coefficientsZ.

The normalisation property of the proposed approach follows from a generalisation of Fisz’s theorem (?).

3



Proposition 1 Consider a vector ofr independent random variablesX with finite meanµi(λi) and varianceσ2
i (λi),

where the density ofXi depends parametrically onλi. The parametric dependence is the same for all variables (i.e., if
λi = λj , thenXi andXj are i.i.d.). Suppose that, for eachi, whenλi → ∞, Xi/µi converges in probability to 1 and
(Xi − µi)/σi converges in distribution to a standard normal variable. Assume also that, ifλi → ∞ for eachi in a given
subset of{i = 1, . . . , r}, then we have ∑r

i=1
γiµi∑r

i=1
µi

→ 0.

Then for the same subset, and for any positive numberp, the variable

Z =

∑r

i=1
γiXi

(
∑r

i=1
Xi)

p

converges in distribution to normal variable with mean and variance

µZ =

∑r

i=1
γiµi

(
∑r

i=1
µi)

p (4)

σ2
Z =

∑r

i=1
γ2
i σ

2
i

(
∑r

i=1
µi)

2p
. (5)

Applying this proposition to our case, withµi = σi = λi andp = 1/2, leads to an asymptotic variance ofσ2
Z =∑r

i=1
γ2
i ρi and an asymptotic mean ofµZ =

√
λ ·∑r

i=1
γiρi. This asymptotic mean tends to zero if the corresponding

noise-free wavelet coefficient vanishes, and tends to infinity otherwise. Actually, Lemma 1 shows that the mean of the
normalised coefficientZ is exactlyzero if the corresponding noise-free wavelet coefficient vanishes. The variance of a
normalised coefficient with zero mean equalsσ2

Z = 1

r

∑r

i=1
γ2
i , which is 1/r for orthogonal wavelet decompositions.

Again, Lemma 1 says that this value is exact, at least after conditioning onN 6= 0. The factor1/r is of orderO(2−j),
with j the scale of the coefficient.

2.2 Thresholding and reconstruction

The above conditional variance stabilisation (CVS) can be implemented via the following threshold algorithm.

1. Apply a wavelet transform to inputy. The transform may be the standard fast decomposition, or, alternatively, a
redundant, shift-invariant representation. Denote byw the vector of coefficients in this decomposition.

2. For all coefficients, compute the normalisation factor
√
N .

3. Find a vector of appropriate level dependent thresholdsθ for the normalised coefficientsz = w/
√
N (using

coordinatewise division). Apply this threshold (using soft, hard or any intermediate threshold approach) and denote
by zθ the thresholded normalised coefficients.

4. Re-multiply the thresholded normalised coefficients to obtain estimates for the noise-free wavelet coefficients:
v̂ = zθ ·

√
N (coordinatewise multiplication).

5. An inverse wavelet transform yields an estimate of the Poisson intensities.

In Step 2, the computation is basically bookkeeping of the support of the filter operations in each step of the multiscale
wavelet decomposition. This bookkeeping is as fast as the actual transform. It is important to note that the introduction of
bookkeeping does not cause a bottleneck in the smoothing algorithm.

When applied to the Haar transform, the proposed algorithm coincides with the Haar-Fisz approach when used with
Haar wavelet shrinkage (?). The threshold has to be level dependent, because, in general, the variance is not constant
across scales. The Haar transform is an exception, providedthat the transform filter coefficients are normalised to 1 and
-1 (instead of the more commonℓ2 normalisation±1/

√
2). Then the varianceVar(Z|N 6= 0) = 1, regardless of the

resolution level of the normalised coefficientZ. We propose a Bayesian shrinkage and threshold procedure inSection 3.
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3 A Bayesian threshold scheme

The preliminary algorithm of Section 2.2 adopts one of the available threshold or shrinkage procedures in Step 3. This
shrinkage procedure could also be Bayesian. Bayesian shrinkage rules, if carefully designed, can be a compromise
between the classical hard- and soft-thresholding rules. Indeed, while hard thresholding is a discontinuous operation,
possibly leading to instability and large variance in the result, soft thresholding suffers from bias in large coefficients (?).
A good compromise requires that the shrinkage is bounded forlarge coefficients; see Proposition 3. Bayesian shrinkage
also has excellent theoretical properties (??). This section tailors a new Bayesian model specifically designed for Poisson
data. This Bayesian model has the following properties.

1. It is constructed within the framework of conditioning onNj,k, the total number of counts that contribute to wavelet
coefficientWj,k at scalej and locationk.

2. Inspired by similar approaches in wavelet denoising (???), the proposed prior model for the noise-free wavelet
coefficients is amixtureof a point mass at zero and a continuous density. A point mass at zero models thesparsity
of a vector a wavelet coefficients with lots of zeros.

3. In the literature, prior models are specified directly on wavelet coefficients. In our approach, however, the prior for
the non-zero coefficients is specified indirectly by a model for theoriginal data intensities. The prior model for the
significant (i.e., non-zero) wavelet coefficients follows in a second step, as a result of taking linear combinations of
the intensities; see Section 3.1. This approach is a generalisation of the multiscale likelihood method (?) to wavelet
families beyond Haar wavelets.

4. Although the prior model is specified in terms of the intensities, we demonstrate that careful design of this model
allows all computations to be performed in the wavelet domain.

Since this paper adopts a mixture model, computation of the posterior distribution requires two applications of Bayes’
rule: once for the computation of the mixture parameter, calledp∗, and a second time for the computation of the posterior
distribution under the assumption that a coefficient is significant. Section 3.1 presents the full prior model. Section 3.2
computes the posterior distribution and posterior mixtureparameter. Special attention is paid to the posterior mean and
median, since these values can be used as shrinkage rules. Inorder to approximate the posterior median, we also need
the posterior variance. As explained in Section 3.2, its computation is slightly more complicated than for the posterior
mean. In order to compute the posterior values, we also need expressions for the marginal probabilities, discussed in
Section 3.3. The expressions for the marginal distributions also appear in a threshold based on Bayes factors (marginal
likelihood ratios). Section 3.4 proves that the posterior mean leads to bounded shrinkage. Finally, Sections 3.5 and 3.6
provide empirical procedures to estimate the hyperparameters of the model, i.e., the prior mixture (or sparsity) parameter
p and the parametera defined below.

3.1 Prior model for relative intensities

As before, we concentrate on a single wavelet coefficient, which we denote byW , thereby omitting the indicesj for scale
andk for location, orl for its position in the wavelet transform matrix. This wavelet coefficient can be written as a linear
combination of observationsX : W =

∑r

i=1
γiXi. We defineN =

∑r

i=1
Xi andZ = W√

N
= 1√

N
·∑r

i=1
γiXi. By ζ

we denote the expected value ofZ, conditioned onN . Thusζ = E(Z|ρ, N) =
√
N ·∑r

i=1
γiρi. The dependence ofζ

onρ is now explicitly specified, as in our Bayesian formulation the components ofρ become random variables with their
own prior, specified later.

We denote byp the prior probability of a coefficient having a non-zero noise-free value:

p = P (ζ 6= 0|N). (6)

This valuep is a model parameter. An empirical method for choosingp is presented after we calculate the marginal
probabilities for the observed coefficients. Setq = 1− p. It is reasonable to assume that the event{ζ 6= 0} is independent
of N .
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For ζ-values away from zero, we assume that the relative intensities come from the followingDirichlet distribution
with parameter vectora whereA =

∑r

i=1
ai:

fρ(ρ|ζ 6= 0) =
Γ(A)∏r

i=1
Γ(ai)

r∏

i=1

ρai−1

i , (7)

For symmetry, there is no reason to assume that the prior onρi is different from the prior onρj , so we can take all
parametersai equal to a singlea.

It has been shown (?) that a linear combination such asζ|N =
√
N
∑r

i=1
γiρi of a Dirichlet vector has a B-spline

density. The knots are inγi and have multiplicityai. If not all ai are integer, the density becomes a so-called generalised
B-spline (?). Both for B-splines and generalised B-splines, there exist quadrature formulae to find integrals, mean values,
etc., but we will use a simple normal approximation, based onthe following results for mean and variance.

Lemma 2 Writing αi = ai/A, the mean and variance of a noise-free wavelet coefficientζ under the prior specified in
equation (7) satisfy:

E(ζ|ζ 6= 0, N) =
√
N ·

r∑

i=1

γiαi (8)

= 0 if all αi = 1/r are equal.

Var(ζ|ζ 6= 0, N) =
N

A+ 1
·




r∑

i=1

γ2
i αi −

(
r∑

i=1

γiαi

)2

 (9)

=
N

A+ 1
· 1
r
·

r∑

i=1

γ2
i if all αi are equal.

The prior model for significant wavelet coefficients is approximately normal, where, according to Lemma 2, the variance
depends on the hyperparametera. This way, the proposed model for the original intensities has the same descriptive power
as a normal model specified directly for the wavelet coefficients. Moreover, as we are working within the framework of
conditioning onN , the variance also depends onN . As illustrated in Proposition 3, this feature undoes the drawbacks of
a normal prior compared to a heavy tailed prior on wavelet coefficients (?).

3.2 Posterior distributions

The conditional probability ofX givenρ andN is multinomial. The Dirichlet distribution is a conjugate prior for the
multinomial distribution (?). This means that the posterior densityfρ|X(ρ|x, ζ 6= 0) is again a Dirichlet distribution.
The posterior parameter vector isa+ x.

As a consequence, the posterior densityfζ|X(ζ|x, ζ 6= 0) of a non-zeroζ is again a (generalised) B-spline function
with knots inγi and multiplicityai + xi. Since the observationsx are always integers, this posterior density is still a
classical (i.e., not generalised) B-spline if the prior density fζ(ζ|ζ 6= 0) is a classical spline.

The posterior distribution of the noise-free valueζ can be written as:

Fζ|X(ζ|x) = P (ζ 6= 0|X = x) · Fζ|X(ζ|x, ζ 6= 0) + P (ζ = 0|X = x) · IIR+(ζ), (10)

with IIR+(x) the indicator function on the positive real numbers (including 0).
The posterior probabilityp∗ of a noise-free coefficientζ being non-zero follows from:

p∗ = P (ζ 6= 0|X = x) =
p

p+ q · PX(x|ζ = 0, N)
PX(x|ζ 6= 0, N)

. (11)
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This expression uses the values of the marginal probabilitiesPX (x|ζ = 0, N) andPX (x|ζ 6= 0, N). The marginal under
ζ 6= 0 is fixed by the priorfρ(ρ|ζ 6= 0) and the multinomial conditional probabilityPX(x|ρ, ζ 6= 0, N) = PX (x|ρ, N).
The same multinomial conditional probability applies under ζ = 0, but the priorfρ(ρ|ζ = 0) has not been specified yet.
We now use this freedom to compute the posteriorp∗ based on the single wavelet coefficientZ instead of the whole set
of observedX, i.e., we wantp∗ to be equal to:

p∗ = P (ζ 6= 0|Z = z,N) =
p

p+ q · PZ(z|ζ = 0, N)
PZ(z|ζ 6= 0, N)

. (12)

Thus, we want the Bayes factor (marginal likelihood ratio) for the observedx in expression (11) to be such that it depends
onz = 1√

N

∑r
i=1

γixi only. The following proposition ensures that this is possible:

Proposition 2 Suppose that we have a Dirichlet model (7) for joint relativeintensitiesρ under the hypothesis that the
corresponding noise-free wavelet coefficient is non-zero,i.e., under the hypothesis thatζ =

√
N
∑

i γiρi 6= 0.
Then there exists a prior model for these joint relative intensitiesρ under the hypothesis that the corresponding noise-
free wavelet coefficient equals zero, i.e., under the hypothesis thatζ = 0, such that the Bayes factor (i.e., the likelihood
ratio of both hypotheses) in the observationsx depends only onx through the empirical (observed) wavelet coefficient
z = (1/

√
N)
∑

i γixi.

This property is useful for two reasons. First, it is more convenient and intuitive to construct a model forPZ(z|ζ = 0, N)
than forPX (x|ζ = 0, N). In particular, it is easy to construct a continuous, normal, approximation for the probability
function of the univariate (discrete) variableZ. Second, it enables us to perform all the computations forp∗ in the wavelet
domain.

In order to perform Bayesian shrinkage, we need expressionsfor the posterior mean and variance. For the posterior
mean, we have the following result:

Lemma 3 Consider a vector of Poisson countsX with relative intensitiesρ that have a mixture distribution of a point
mass and a joint Dirichlet prior as specified in expression (7). Assuming that the componentsai of the vector of prior
hyperparametersa are equal, the posterior expected value for a noise-free wavelet coefficientζ =

√
N
∑r

i=1
γiρi, equals

E(ζ|Z,N) = P (ζ 6= 0|Z,N) · N

N +A
· Z. (13)

The posterior variance is a bit more complicated. It has the form of expression (9), withαi = (ai + Xi)/(A + N).
Even if all priorai are equal, the posterior values ofαi are no longer equal. Hence, unlike in the proof of Lemma 2, the
first vanishing moment of the dual wavelet is no longer sufficient to eliminate all dependence on individualXi’s. As a
consequence, the posterior varianceVar(ζ|X , ζ 6= 0) is not necessarily equal toVar(ζ|Z, ζ 6= 0, N).

From posterior mean and variance, and using a normal approximation for the posterior densityfζ|X(ζ|x, ζ 6= 0)
(which is a spline or generalised spline function), it is possible to derive theposterior median. Since for small observed
coefficientsz, the posterior mixturep∗ is much smaller than1/2, this posterior median must be exactly zero. A posterior
median therefore leads to a threshold scheme (?). This threshold erases small posterior means and therefore leads to a
smoother reconstruction.

3.3 Marginal probabilities

The marginal probability functions ofX andZ already appeared in expressions (11) and (12) for the computation of
posterior probabilities. They are also relevant to the estimation of the model’s parameters in an empirical Bayes approach.
We also need the marginal distribution ofZ|(ζ 6= 0, N) to fill in the still open details of the model forζ = 0.
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Lemma 4 If X|(N,ρ) has a multinomial distribution and the relative intensitiesρ|ζ 6= 0 have a joint Dirichlet density,
with hyperparametersa andA =

∑r

i=1
ai, then

PX (x|ζ 6= 0, N) = Γ(N + 1) · Γ(A) ·
r∏

i=1

Γ(ai + xi) ·
([

r∏

i=1

Γ(xi + 1)Γ(ai)

]
Γ(A+N)

)−1

(14)

If all ai = 1, this, remarkably, reduces to a uniform distribution on allconfigurationsx (note that the conditional
distribution is multinomial). The subsequent expressionsfor marginal mean and variance include this special case of a
uniform distribution on the discrete simplex{x}.

Lemma 4 gives an expression for one of the marginal probabilities that appear in the right-hand side of Expression
(11). It also leads to the forthcoming Lemma 5 about the marginal probabilities in Expression (12). In Section 3.2, we
required that the two Expressions (11) and (12) forp∗ are equal. This leads to a condition on the marginal probabilities
PX (x|ζ = 0, N), andPZ(z|ζ = 0, N), which have not been specified yet. As explained in Section 3.2, it is interesting
to specify the marginal in the wavelet domainPZ(z|ζ = 0, N) first, and let the marginalPX (x|ζ = 0, N) follow
from the equality of the two expressions forp∗. We specify the marginalPZ(z|ζ = 0, N), after we state a result for
PZ(z|ζ 6= 0, N).

Lemma 5 The mean and variance of a normalised empirical wavelet coefficient, given that its noise-free value is non-
zero, satisfyE(Z|ζ 6= 0, N) = N ·∑r

i=1
γiαi, which is zero ifαi = 1/r, and

Var(Z|ζ 6= 0, N) = (N +A)/N ·Var(ζ|ζ 6= 0, N).

Remark 1 Note that the Bayesian shrinkage factor from (13) for non-zero coefficients,N/(N + A), equals the ratio of
the prior and marginal variances, just as in the case of a sum of two normals.

We now specify the marginal probability of coefficients thatdo not carry information, i.e., for whichζ = 0. The idea
is to extend a Bayes factor that holds for typical, specific values of the parametersρ to all situations. More precisely,
we require that the variance of the wavelet coefficient underζ = 0 is well approximated by the variance in one specific
instance of that hypothesis, namely the case of constant intensities:

Var(Z|ζ = 0, N) ≈ Var(Z|ρi = 1/r, ∀i, N) =
1

r

r∑

i=1

γ2
i .

On the other hand, if allαi = 1/r, a combination of Lemmata 2 and 5 yields for significant coefficients that

Var(Z|ζ 6= 0, N) =
N +A

1 +A
· 1
r

r∑

i=1

γ2
i ,

so we can write that

Var(Z|ζ 6= 0, N) ≈ N +A

1 +A
·Var(Z|ζ = 0, N). (15)

The approximation of the general by a specific case now motivates us torequirethat the Bayes factor equals the ratio:

PZ(z|ζ = 0, N)

PZ(z|ζ 6= 0, N)
=

φσ0
(z)

φσ1
(z)

, (16)

whereφσ stands for the normal density function with zero mean and standard deviationσ, andσ1 =
√
(N +A)/(1 +A)σ0.

In these expressions,σ0 = (1/r)
∑r

i=1
γ2
i .
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Remark 2 This choice in terms of the Bayes factor fixesPZ(z|ζ = 0, N) for all possiblez. This specification is necessary
in the computation of the posterior probabilityp∗. It is, however, unlikely that the marginal probabilitiesPZ(z|ζ = 0, N)
sum to one. In order to remedy this problem, it is in principlenecessary to allow a Bayes factor different from (16) for (at
least) one value ofz, for instance, the valuez = 0 if that value has a non-zero probability.

In practice,PZ(z|ζ = 0, N) is not an exact normal density, so Expression (15) for the variances is still an approxima-
tion. The computation of the posterior probabilityp∗ however relies on Bayes factors only: under the now fully specified
model, those calculations are exact.

Remark 3 This section describes marginal probabilities, i.e., likelihoods of a single wavelet coefficient. Likewise, the
Bayesian approach finds posterior probabilities in every coefficient separately. Since the wavelets we use are not limited
to the Haar basis, adjacent coefficients are mutually dependent, so the overall (full) likelihood is not just the productof
the individual likelihoods in every coefficient. The proposed algorithm in this paper processes every coefficient separately.
Such an approach is also referred to as a pseudo-likelihood.

3.4 Thresholds and bounded shrinkage

Given the expressions for the Bayes factor, we have all the elements for the posterior probabilityp∗. We can compute the
threshold valueθBF for which |z| > θBF implies thatp∗ > 1/2. In other words, coefficients above this threshold, are
qualified by the model as ‘more likely signal than noise’. This threshold equals:

θBF =

√√√√2
N +A

N − 1
log

(
q

p

√
N +A

1 +A

)
· σ0. (17)

The threshold induced by a posterior median can be found by solving Fζ|X(0|x) = 1/2. Since the complete posterior
distribution in expression (10) depends on all the observationsx, and not just on the coefficientz, the threshold is not a
constant for a given coefficient, but in any case, it is only slightly larger than the Bayes factor thresholdθBF.

It is interesting to investigate how large coefficients are treated in the given model. In particular, we prove that
shrinkage is bounded for given, finite threshold values. This is in contrast to the case of normal noise in combination
with a Gaussian prior for significant coefficients: such a model leads to undesirable unbounded shrinkage for large input
coefficients.

Proposition 3 Using the posterior mean as a shrinkage rule for the mixture prior model with point mass inζ = 0 and a
joint Dirichlet away from zero, as specified in (7) and (16), there exists a constantC < ∞ such that forN → ∞, i.e. for
θBF → ∞,

|Z − E(ζ|Z,N)| ≤ C · θBF. (18)

This proposition shows that, for any value ofN , sufficiently significant values ofz have bounded shrinkage and there
exists an upper bound independent ofN . Actually, the concept of conditional variance stabilisation turns a situation
without bounded shrinkage (normal prior with normal noise)into a more favourable situation with bounded shrinkage, as
for heavy tailed priors (?).

3.5 Empirical Bayes

The expressions for marginal variances also allow for the computation of the marginal likelihood of parameterp, the
probability for a coefficient being significant. This hyperparameter has to be estimated. We assume that this parameter is
scale dependent, and denote the value at scalej by pj . If we write σ2

0 = Var(Z|ζ 6= 0, Nj,k) andσ2
1,j,k = Var(Z|ζ =

0, Nj,k), and use the same model details as described in Section 3.3, we can express the likelihood inpj for an observed
vector of normalised coefficientszj as:

logL(pj) =
2
j∑

k=1

log
(
pj · φσ1,j,k

(zj,k) + (1− pj) · φσ0
(zj,k)

)
.

9



Note thatσ1,j,k depends onNj,k, so the likelihood expression is different for every observed coefficient.
The values forσ0 are independent of the observedNj,k, and could be estimated from the data using the Median

Absolute Deviation (MAD). As mentioned before, this works satisfactorily on fine scales, but MAD is not sufficiently
robust on coarse scales. Therefore, we use the exact expression for σ0 in terms of the wavelet transform coefficientsγi.

At fine scales,pj is generally quite small, and it might be difficult to capturethe few significant coefficients at those
fine scales, leading tôpj = 0. We therefore require that the posterior median threshold should be below the universal
threshold (?), i.e. P (ζ > 0|Z = θuniv, N) ≥ 1/2. This implies a condition on the posterior probabilityp∗ for an
observation equal to the universal threshold, i.e.,P (ζ = 0|Z = θuniv, N) ≤ 1/2. Sinceθuniv =

√
2 lognσ0 is a large

value, the probabilityP (ζ < 0|Z = θuniv, N) is small and both conditions are practically equal. Elaboration of the latter
condition leads top > C/(C + nD), whereC = σ1,j,k/σ0 andD = 1 − 1/C2. This minimum value for the priorp
therefore also depends, throughσ1,j,k, on the observedNj,k in each coefficient.

3.6 Estimation of the Dirichlet parameter vector

The relative intensitiesρj,k,i involved in the computation of a coefficientζj,k at scalej and locationk can be expressed
as a combination of the relative intensities for the single coefficient at the coarsest scalej = 0:

ρj,k,i = ρ0,0,i/
∑

i∈Ij,k

ρ0,0,i. (19)

This implies that the whole prior is fully specified by the model for the relative intensities at coarsest scale. In particular,

ρ0,0 ∼ Dirichlet(a) ⇒ ρj,k ∼ Dirichlet(aIj,k
).

This can be verified by constructing a vector of independent Gamma distributed variablesV ∼ Γ(λ,a) (for someλ),

such thatρ0,0
d
= V /

∑
Vi andρj,k

d
= V Ij,k

/
∑

Ij,k
Vi. The parameter vectora is therefore scale invariant. If allai are

assumed to be equal, then this single parametera can be estimated from the expression for the marginal variance of the
observationsXi:

Var(Xi|ζ 6= 0, N) = N(N +A)Var(ρi|ζ 6= 0) = N(N +A)
a(A− a)

A2(A+ 1)
.

At the coarsest scale, we can assume that indeedζ 6= 0. Using the sample variance from the input data, we can then
construct the following estimator fora:

â =
N2(n− 1)− n2σ̂2

n3σ̂2 −Nn(n− 1)
.

In this expression,n is the sample size,N is the observed sum of counts andσ̂2 is the estimated marginal variance.
This parameter vectora is thus closely related to the variance of the underlying intensity function. If this function

shows clear heterogeneous behaviour, one could consider a non-constant vectora and estimate it from the variances of
different subsets of the input sample.

4 Simulations

As in earlier papers (??), we ran 100 simulations on low and high intensity versions of four commonly used test signals,
called ‘Bumps’, ’Blocks’, ‘Heavisine’, and ‘Doppler’ (?). These four intensity curvesf were rescaled and shifted along
the y-axis, such thatmax f = 1/min f = M, with M = 128 for the high intensity version andM = 8 for the low
intensity runs. We considern = 1024 equidistant points on every intensity curve.

The simulations were run with a non-decimated wavelet transform. For the results in Table 1, the Daubechies least
asymmetric orthogonal wavelets (also known as symmlets) with 10 vanishing moments were used. Table 2 repeats the
simulations, this time with Daubechies orthogonal basis with 3 vanishing moments, and illustrates that the good perfor-
mance of our CVS-method (conditional variance stabilisation) is independent of the particular wavelet transform used.
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Rounded mean values of10, 000 · ‖λ̂− λ‖2/‖λ‖2
Symmlet, 10 vanishing moments

Heavisine Blocks Bumps Doppler
λmax 8 128 8 128 8 128 8 128

Anscombe 55 6 219 30 2208 163 114 13
Fisz-Wav., Cycle Spin 29 6 194 30 1082 154 90 13

BMSMS 44 7 135 7 1824 184 147 20
CVS, Cycle Spin 28 5 196 30 910 118 92 12

CVS, non-decim. W.T. 30 6 203 31 930 119 98 13
Bayesian CVS 42 6 234 28 1142 126 114 10

Table 1: Standardised output Mean Average Squared Error (MASE) values (mean over 100 simulations, average over
n = 1024 observations) for low and high intensity versions (peak intensities 8 and 128) of four test signals. The Anscombe
normalisation, Cycled Spinned Haar-Fisz method with wavelet smoothing (abbreviated as Fisz-Wav.) and the Bayesian
MultiScale Model Shrinkage (BMSMS) are three competitors discussed extensively in the main text. The Cycle Spin
implementation of our method, CVS, as well as non-decimatedimplementations with and without Bayesian shrinkage
are three variants of the new method we propose. All methods except the BMSMS use Daubechies Least Asymmetric
orthogonal wavelets (‘symmlets’) with 10 vanishing moments. All non-Bayesian procedures adopt the exact level de-
pendent minimum ASE thresholds, which explains why CVS without Bayes sometimes outperforms the empirical Bayes
algorithm.

The method of Bayesian Multiscale Models (BMSMShrink) (?) is, however, inherently based on Haar wavelets. For
all methods except the BMSMS and the Bayesian CVS, we apply simple level-dependent thresholds with the exact min-
imum average squared error. In practical applications, such a threshold has to be approximated, e.g., using SURE or
cross validation. The use of exact minimum ASE (average squared error) thresholds explains the relative poor results for
the Bayesian thresholding, especially on low intensity signals. Nevertheless, the Bayesian model succeeds very well in
selecting the significant coefficients. For high intensity signals, Bayesian shrinkage may even outperform minimum ASE
thresholding, because Bayesian shrinkage rules offer a transition between kill and keep which is smoother than the hard
or soft thresholding rules.

All simulations can be reproduced using Matlab routines in the recently upgraded package PiefLab (?), which can be
downloaded fromwww.cs.kuleuven.ac.be/∼maarten/software/pieflab.html.

A first important competitor for the method proposed in this paper is the normalisation procedure for Poisson data by
Anscombe (??). The Anscombe procedure is quite straightforward:

1. For every observed countxi, defineyi =
√
xi + c, with some constantc. For asymptotic reasons, this constant is

generally given the valuec = 3/8, although simulations indicate thatc = 0 might be an interesting alternative for
small intensities.

2. Apply any wavelet (or other) smoothing technique for additive normal data to the vectory. Call µ̂i the output for
thei-th data point. The quantitŷµi estimatesµi = EYi.

3. Estimate the Poisson intensityλi of the observationxi as λ̂i = λ̂i

∗
+ Var[

√
ξ + c

∣∣ξ ∼ Poisson(λ̂i

∗
)] where

λ̂i

∗
= µ̂i

2 − c. The termVar[
√
ξ + c

∣∣ξ ∼ Poisson(λ̂i

∗
)] corrects for the bias due to squaring an estimator. Indeed,

if µi = EYi, andXi = Y 2
i − c, thenλi = EXi = E(Y 2

i − c) = EY 2
i − c = µ2

i +Var(Yi)− c.

Anscombe’s approach has at least two disadvantages: first, it considers smoothness of
√
f rather than smoothness off

itself. Second, taking square roots makes bumps less prominent against background noise. CVS outperformed Anscombe
in all of our runs. The same conclusions hold for other types of wavelets and also if one compares the Bayesian algorithm
proposed in this paper with the Bayesshrink procedure proposed by?.
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Rounded mean values of10, 000 · ‖λ̂− λ‖2/‖λ‖2
Daubechies wavelets, 3 vanishing moments

Heavisine Blocks Bumps Doppler
λmax 8 128 8 128 8 128 8 128

Anscombe 55 6 211 26 2190 151 132 15
Fisz-Wav., Cycle Spin 31 6 182 26 1071 142 106 16

BMSMS 44 7 135 7 1824 184 147 20
CVS, Cycle Spin 31 5 185 26 961 124 107 15

CVS, non-decim. W.T. 33 6 193 26 985 125 114 16
Bayesian CVS 39 5 216 21 1212 123 131 12

Table 2: Standardised output Mean Average Squared Error (MASE) values (mean over 100 simulations, average over
n = 1024 observations) for low and high intensity versions (peak intensities 8 and 128) of four test signals. All methods
except the BMSMS use Daubechies orthogonal wavelets with 3 vanishing moments.

The second competitor, Haar-Fisz normalisation with wavelet smoothing, proceeds as follows (?):

Step 1. Apply a Haar-Fisz (HF) decomposition. This is equivalent to a Haar transform, followed by a Conditional Variance
Stabilisation applied to the Haar transform coefficients.

Step 2. To these HF coefficients, apply an inverse Haar transform.

Step 3. Apply any forward wavelet transform, using the basisand filters that best match with the signal at hand. (In our
comparative simulation studies, we used the same filters as in the corresponding CVS method.)

Step 4. Apply any smoothing (threshold, shrinkage) technique for wavelet coefficients with additive, normal noise.

Step 5. Apply an inverse wavelet transform, followed by a forward Haar transform

Step 6. Reconstruct the data with an inverse Haar-Fisz transform, i.e., undo the variance stabilisation and apply an inverse
Haar transform.

The separation of stabilisation from the actual multiscaleprocessing creates a few disadvantages:

1. A separate multiscale preprocessing leads to a global algorithm which is slightly more computationally complex
than doing everything in one single decomposition.

2. It is unclear whether the underlying signal keeps the samesmoothness characteristics after applying the Haar-like
preprocessing. Also, upon reconstruction, the undoing of the normalisation happens in a Haar-basis, and therefore
may partly destroy the initial smoothness of the reconstruction obtained from the inverse wavelet transform with
non-Haar filters: although this last step probably has less impact than a threshold, it does operate on coefficients in
a Haar-basis, so the output will show some Haar-like artifacts.

3. A fully redundant (non-decimated) implementation of a Haar-Fisz method is impossible. A cycle spinning version
of the actual wavelet transform is of course straightforward, but the Haar-Fisz variance stabilisation is intrinsically
based on a decimated decomposition. Indeed, a non-decimated Haar-Fisz decomposition is very unlikely to be an
exact redundant Haar decomposition of any signal. Any reconstruction from this Haar-Fisz decomposition using
an inverse redundant Haar transform (Step 2 of the algorithmabove) is therefore an irreversible process, unless
the reconstruction is based on only one of the cycles. In thatcase, there is no point in using a redundant Haar-
Fisz transform in the first place. So, the only way to perform acycle-spinning Haar-Fisz variance stabilisation
is by averaging all possible cycles explicitly. Although time consuming, such an external cycle spinning reduces
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Figure 1: Left: The web domain hits data. Right: Estimation of the weekly expected number of hits, using a decimated
wavelet transform, Bayesian shrinkage and CDF 2,2 wavelet basis.

artifacts from the post-processing step in a Haar basis. In principle, the cycles are found by shifting then input
observations overk positions, wherek = 1, . . . , n. The number of possible shifts therefore equals the data vector
length. Experiments (?) indicate that in practice some 50 shifts are sufficient to remove most of the artifacts. We
adopted this rule of thumb in our simulations when applying CVS or Haar-Fisz procedures with explicit (external)
cycle spinning. We also included a non-decimated implementation of the CVS algorithm (sometimes referred to as
internal cycle spinning).

The third competitor is the Bayesian multiscale likelihoodmodel in (?). The two models coincide when Bayesian
CVS is applied to the Haar transform. The only essential difference is the choice of the hyperparameters, since the models
are specified in a different way. This is confirmed in simulations, where, for the special case of Haar wavelets, the two
variants show comparable performance. Our method, however, has the important advantage of being applicable to any
type of wavelet basis, via a classical wavelet analysis, as well as to second generation wavelets through a lifting scheme.

5 An application: Hits on an internet domain

A real data example (also available in the software package PiefLab used in the simulations) comes from the weekly web
statistics on my personal web site. The series has been running since the first week of February 1997 and it shows some
remarkable properties; see Figure 1. The two peaks (indicated with a 1 and 2 in the figure) are due to announcements
in news groups. The data of week 46 are missing (the software replaced it by 0). A human viewer also immediately
recognises the annual “Christmas dips”. The smoothing algorithm finds those dips modest or even insignificant, as we
discuss below, since it cannot take their annual character into account (as a human viewer does). Another striking, and yet
unexplained, feature appears to be the sudden increase to a higher level after Christmas, especially in January 1999, 2001,
2002 and also 2003. In some years (2001, 2002, and especially2003), that initial gain was (partially) lost after a few
months. Since the underlying intensity seems to have discontinuous changes, a wavelet decomposition is an appropriate
tool for the analysis of these data.

The example illustrates that the immediate applications ofthe method presented in this paper are not strictly limited to
Poisson data. Indeed, the weekly number of hits on an internet domain is certainly not Poisson distributed: it counts every
attempt to download any file including images, text and so on.Visitors usually cause more than one hit. If we callXi the
number of hits in weeki, Ri the number of visitors that week, andSi,k the number of files downloaded by thek-th visitor
in weeki, we haveXi =

∑Ri

k=1
Si,k. We assume that the number of visitors is Poisson distributedwith intensityλi. The

mean number of downloadsµSi and its corresponding varianceσ2
Si are supposed to be modestly varying functions of time

i. The averageµSi depends on, among other things, the number of files availableon that domain.
We then haveEXi = λi µSi andVar(Xi) = λ2

iσ
2
Si + λi

(
µ2
Si + σ2

Si

)
. We want to estimateEXi and we assume that
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σ2
Si ≪ µ2

Si, as would be the case, for instance, ifSi,k were Poisson with large mean, so thatVar(Xi) ≈ κ · EXi, for
some constantκ.

In order to capture the narrow peaks as much as possible, we opt for a wavelet with narrow support: the biorthogonal
spline wavelet of Cohen, Daubechies and Feauveau with two primal and two dual vanishing moments. This basis (CDF
2,2) is well known in image processing (it is in the JPEG-2000standard). The result in Figure 1(Right) follows from a
decimated Bayesian thresholding algorithm. The smoothingcurve captures all characteristics that we discussed above.
The piecewise linear CDF 2,2 basis functions are clearly reflected in this output. We also point out that other wavelet
bases might not reconstruct the features so well, or even skip some of them. This illustrates the importance of the ability
to incorporate variance stabilisation into any wavelet basis.

6 Conclusions and directions for further research

This paper introduced a novel framework for estimating the intensity curve of Poisson data with piecewise smoothly-
changing intensities. The key concept is the idea of conditioning on the sum of the observations involved in the computa-
tion of a wavelet coefficient. The proposed framework bringstogether the benefits from some existing procedures:

1. With the Anscombe preprocessing approach (?), the proposed method shares the ability to incorporate anywavelet
transform.

2. From the Haar-Fisz normalisation (?), it inherits the possibility of applying any threshold procedure for coefficients
with additive, homoscedastic noise.

3. As in the Bayesian multiscale model (?), the method can also be implemented in a translation invariant way, and it
also has a Bayesian component.

The proposed method automatically adapts to situations of low or high intensities, and to data with areas of both low and
high intensities. Beside these properties, extension towards non-equidistant data, using the lifting scheme, is straightfor-
ward.

An important subject of further research is the consistencyanalysis of the proposed estimator. This analysis involves
a study of the maximum risk (i.e., expected MSE) over a function class, typically Besov function ballsBα

p,q(R), with
parametersR, p, q, andα. For a formal definition of these function classes, we refer to the literature. A short overview
can be found in?, pages 76–78. Important for this discussion is the fact thata function is in a Besov ballBα

p,q(R) if and
only if the sequence of its wavelet coefficientswj,k is in a corresponding Besov sequence ball,bαp,q(R), meaning that

‖w‖bαp,q :=




∞∑

j=L

2jβq




2
j∑

k=1

|wj,k|p



q

p




1
q

≤ R, (20)

with β = α + 1/2 − 1/p. (The definition of the Besov sequence norm has to be slightlymodified if q = ∞.) This
Besov sequence norm can be interpreted as a mathematical formulation of multiscale sparsity. Indeed, the inner sum is
theℓp-norm of the coefficients at a given scale. Small values ofp, i.e.,p < 2 are of particular interest, since they favour
sparse sequences: isolated large coefficients contribute little to the overallℓp-norm. The sequence of the level-dependent
ℓp norms at all scales is then measured with a weightedℓq norm. The weights are2jβq. Therefore, iff ∈ Bα

p,q(R),
then theℓp-norms at fine scales (i.e., with growingj) must decay at least asO(2−jβ). Since theℓp-norm, withp < 2, is
dominated by the many small coefficients related to the intervals wheref is smooth, this decay is related to the degree of
smoothness of the function between its singularities. Thisobservation is similar to the case of smooth functions inCα,
whereα is related to the decay in the Fourier transform domain.
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Appendix: proofs

Proof of Lemma 1. The joint distribution of(X1, . . . , Xr) conditional onN is multinomial. Using the expressions for
mean and covariance of a multinomial vector, we writeE(Z|N = n) =

√
n
∑r

i=1
γiρi and for the variance ofZ given

N = n:

Var(Z|N = n) =

r∑

i=1

γ2
i ρi(1− ρi)− 2

r∑

i=1

i−1∑

j=1

γiγjρiρj =

r∑

i=1

γ2
i ρi −

(
r∑

i=1

γiρi

)2

for n 6= 0.

Note thatVar(Z|N = n) does not depend onn and both expressions only depend on therelativeintensities ofXi, not on
the absolute intensities. From this, we average over all non-zeroN to obtain the results of the lemma. 2

Proof of Proposition 1. This proposition is an extension of a theorem by Fisz (?) and the proof is almost completely
similar. Referring to the paper by Fisz, the extension of theLemma 1 in that paper is trivial. Lemma 2 in that paper can
be extended towards more than two independent variables by lettingξ1 = γ1X1 andξi = −γiXi for i = 2, . . . , r. Then
first considerξ1 − ξ2, then(ξ1 − ξ2) − ξ3 and so on. The proof of the actual theorem can be extended immediately by
replacingm1 −m2 (in the notation of Fisz) by

∑r
i=1

γiµi (our notation).
Proof of Lemma 2. These results follow from combining the expressions forE(ρi|ζ 6= 0), Var(ρi|ζ 6= 0), and
cov(ρi, ρj |ζ 6= 0) in a Dirichlet model. If allαi = 1/r, the first vanishing moment of the dual (analysis) wavelet (?,
page 241) annihilates this constant, thereby simplifying the expressions. 2

Proof of Proposition 2. Suppose that the model is fully specified in terms of waveletcoefficientsz. In particular,
PZ(z|ζ = 0, N) is given, and we state that for allK =

(
N+r−1

r

)
possible configurations ofx which sum to givenN , and

for z = (1/
√
N)
∑r

i=1
γixi, the Bayes factor in terms ofx equals the Bayes factor in terms of the correspondingz:

PZ(z|ζ = 0, N)/PZ(z|ζ 6= 0, N) = PX (x|ζ = 0, N)/PX(x|ζ 6= 0, N). This leads toK conditions onfρ(ρ|ζ = 0),
one for each configurationx that sums up toN :

∫

ρ
fρ(ρ|ζ = 0) · PX (x|ρ, N) dρ = PX (x|ζ = 0, N) =

PZ(z|ζ = 0, N)

PZ(z|ζ 6= 0, N)
· PX (x|ζ 6= 0, N).

In order to find a prior that satisfies these conditions, one could for instance writefρ(ρ|ζ = 0) =
∑K

k=1
ckfk(ρ), for

some basis functionsfk(ρ), and then solve a set ofK linear equations in the coefficientsck.
Proof of Lemma 3. Since the posterior densityfρ|X(ρ|x, ζ 6= 0) is a Dirichlet distribution, with parameter vectora+x,

we have forζ =
√
N
∑r

i=1
γiρi that

E(ζ|X , ζ 6= 0) =
√
N

r∑

i=1

γi
ai +Xi

A+N
.

And if all ai are equal, the first vanishing moment of the dual (analysis) wavelet (?, page 241) annihilates this constant,
reducing the expression to:

E(ζ|X, ζ 6= 0) =

√
N

N +A

r∑

i=1

γiXi =
N

N +A
· Z.

Since the right hand side only depends onZ, we can equivalently write:E(ζ|Z, ζ 6= 0, N) = E(ζ|X , ζ 6= 0) =
N/(N +A) · Z, from which the lemma follows. 2

Proof of Lemma 4. This is easy to verify, for instance by marginal = prior forρ · conditional / posterior, using the fact
that the posterior forρ is also a Dirichlet distribution. 2

Proof of Lemma 5. The proof follows from the rules of conditional expectation. For the variance, this leads to:

Var(Xi|ζ 6= 0, N) = Var(E(Xi|ρi, ζ 6= 0, N)) + E(Var(Xi|ρi, ζ 6= 0, N)) = N(N +A) ·Var(ρi|ζ 6= 0, N),

and a similar result holds for the covariance:cov(Xi, Xj |ζ 6= 0, N) = N(N + A) · cov(ρi, ρj|ζ 6= 0, N). Combining
these results completes the proof. The computation of the mean is trivial. 2
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Proof of Proposition 3. We have for the posterior mean:

|Z − E(ζ|Z,N)| =
∣∣∣∣Z − p∗ · N

N +A
· Z
∣∣∣∣ =

A

N +A
· |Z|+ (1− p∗) · N

N +A
· |Z|. (21)

The value of|Z| is bounded by the normalisation factorN , i.e. |Z| ≤ ‖γ‖∞
√
N, and at the same time, the factor

N/(N+A) tends to one forN → ∞. As a consequence, the first term in (21) is bounded by a constant: A/(N+A)·|Z| ≤
‖γ‖∞

√
N/(N +A) ≤ ‖γ‖∞

√
A/2. The second term in (21) is arbitrarily small for sufficientlylarge values of|z|. The

condition that(1− p∗) · |z| < ǫ leads to

( |z|
ǫ

− 1

)
q σ1

p σ0

< exp

(
z2 · σ

2
1 − σ2

0

2σ2
1σ

2
0

)
.

This is satisfied if
|z|
ǫ

q σ1

p σ0

<
exp(z)

ǫ

q σ1

p σ0

< exp

(
z2 · σ

2
1 − σ2

0

2σ2
1σ

2
0

)
.

Solving the last inequality reduces to a quadratic form in|z|. We find that(1− p∗) · |z| < ǫ if

z ≥ N + A

N − 1
· σ2

0 +

√√√√
(
N +A

N − 1

)2

σ4
0 + 2

N +A

N − 1
· σ2

0 · log
(
q

p

√
N +A

1 +A

)
+ log

1

ǫ
.

This expression shows the same asymptotic behaviour as the Bayes factor threshold (17), which is of smaller order than
the maximal value of|z| for a givenN . That maximum value depends linearly onN . This means that there exists a
constantC∗, such that(1 − p∗) · |z| < ǫ if |z| > C∗θBF. The contribution of this second term to the total shrinkage
|Z − E(ζ|Z,N)| is then bounded bymax(ǫ, C∗θBF), since one can never shrink more thanZ itself. 2
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