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Abstract

Motivated by the application of single molecule detectioraihighly dilute solution, we discuss the problem of muéipl
change point detection in the intensity curve of low-inteedPoisson observations. It is explained that theltiple change
point detection problem is inherently a multiscale prohlaie analyze the data using an extension of the ContinuougMfav
Transform (CWT), the so-called Unbalanced Wavelet Tramsfd he presence of change points in the underlying intgositve
is revealed by a multiscale chain of local maxima in the CWalysis. We present a new algorithm for the reconstructiathef
chains by linking local maxima across scales. The new alyoroutperforms the existing ones in case of low-intensigeas,
where noisy fluctuations are relatively dominant. Low isiéias also motivate the extension of the CWT towards thedlimized
Wavelet Transform. This extension is crucial in detectim@b changes against intensive noise.

1 Introduction

The algorithm discussed in this paper is motivated by thieviohg problem in biochemistry: fluorescent molecules,icgatly

DNA molecules, in a highly dilute solution are detected gsarconfocal microscope. This microscope emits laser lidhickvis

then focused onto a spot in the solution. A fluorescent mdddaithis focus re-emits photons that can be detected inectiat
If the concentration of molecules is such that on averaggam molecule or less is in the focus of the microscope, shisliled
single molecule detection. The setting allows to detee exents, to sequence single-molecule DNA and so on. Asabyshe
detected photons allows even to identify the single moketiulough its fluorescence properties. On the other handgim lsw

concentrations, the signal has low intensity and backgtowise plays an important role. The objective of this papéw detect
the presence of one or more molecules in the focus. The ityarfgdhe detected photons, the duration and the startirigt jpd

the molecule’s presence in the focus are three parametdreitaracterize (the size, velocigtc of) the molecule.

In order to develop a mathematical procedure, we generdizgroblem formulation: count data such as photons in a
confocal microscope are typical examples of Poisson datgen®i consider general instances from such Poisson couwrggses,
where the intensity, i.e., the average number of photonsrenosecond, is piecewise constant. In other words, weidens
signals with several levels of intensity. The assumptiait the observations have piecewise constant intensitydceagily be
relaxed towards piecewise linear or even piecewise smabdmsities. Figure 1 shows a simulated test example. Thesbw
level of intensity is probably background noise, while thieevs contain significant data. The objective is to iderttigse levels
of intensity. This identification includes the precise sitay point of the significant interval, its exact duratiordahe (average)
level of intensity. All three properties characterize thserved data.

It should be emphasized that the beginning and end pointseasubsequent levels of intensity are unknown. The issue of
this paper isnotin the first place finding a smooth curve that fits the obsewmatbetween the beginning and end points, for
instance, using splines with (multiple) knots on the bemjigrand end points. That problem is rather a subsequentadftepthe
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Figure 1: A simulated example of Poisson data with time vagyntensities. On the left the plot of intensity curve. Tisis
scaled and vertically translated version of the well knotocks’ test exampled]. (The translation was achieved by adding 3.5
to all values of the Block test signal.) In the middle a randealization. On the right the estimation from that real@atusing
the procedure proposed in this paper.

one discussed in this paper. The problem discussed in tpiergthe location of the beginning and end points themsele
statistical description of this problem is change poinedgbn. As we explain in Section 2, the case of multiple clegoajnts is
intrinsically a multiscale problem. Change point analysisig multiscale techniques, such as wavelet decomposijtitas been
investigated in several paper3 P, ?, ?, ?, ?, ?]. Although not relying on wavelets, a methodology quiteifamto multiscale
analysis proceeds by kernel metho@ls [The kernel can be seen as a scale parameter, and it can §endinca data-adaptive
way, leading to a procedure somehow related to a first stégeipriocedure presented in this paper. The work summarizédsin
paper concentrates on finding change points in Poisson 8atdlar problem descriptions appear in earlier pap@r®,[?], but
none of these applied a multiscale analysis to the problem.

The contribution of this paper consists of the combinatibtrmad assumptions and an original approach applying new
techniques in wavelet analysis. More specifically, on treuaption side, we allow more than one change point and we do
not specify how many of them are present in the data. There igoper bound on the possible number of change points. The
background noise level is assumed unknown. The method iesticted to high intensity signals. Indeed, the singléatule
detection example has an extremely low intensive signal.

As for the new techniques, the majority of the existing watélased change point analyzes proceed in three steps: first
perform a multiscale decomposition, i.e., a wavelet tramsf This step transforms the observations into a sequdmentbers,
called wavelet coefficients. In a second step, these cazffiare modified. A typical example is thresholding, whenalk
coefficients are considered as insignificant contributiamd hence replaced by zero. The third step is the reconsinuat
the data from the modified coefficients. Thresholds openaiadividual wavelet coefficients. Individual coefficients represent
information at specific scales. Our method uses the infdomatf a wavelet decomposition as a tool in an active search fo
the optimal scales to describe each of the change points sHairch proceeds by scanning and connedtical maxima of
coefficients within each scale of a (discretizedntinuouswavelet analysis. In this respect, our method is differeoinf an
existing analysis, based on results in extreme value thgryThat method is based aglobal maxima within a single (well
chosen) scale. Itis also different from earlier methods¢banect local maxima at successive scabe8] Those methods look
at the finest scale to determine the location of the change,pehereas the presented method finds an optimal scale toimor
Starting from the optimal scale found adaptively by conimgdibcal maxima, we extend the analysisuttbalancedransforms.

As explained later, this increases the (statistical) pavi¢he detection procedure.
Although the techniques are presented in the framework isEBn counting data, the method can easily be extendeddswar



other types of random data.

This paper is organized as follows. Section 2 deduces the ade principles of a multiscale analysis. As a conclusion
to this section, we find that the detectionrofiltiple change points has an essential multiscale character.o8e&tiefines the
multiscale analysis, leading to the so-called Continuoasét Transform (CWT). The benefits from this continuousios of
the multiscale analysis in the context of change point dieteés explained. Section 4 constructs lines of waveletimaxout of
the CWT. These lines are the basic tools to search the olimervdor significant features at all possible locations asitth any
range (i.e., scale, or duration). The relationship betwbese maxima lines and change points is further explore@ai@h 5.
Next, Section 6 introduces unbalanced Haar transformsdardp increase the statistical power of the change poirtctien.
After the CWT analysis, the construction of wavelet maximag out of it, and the extension towards unbalanced anglyze
are ready to identify candidate change points, each withied & statistical significance. As this results in a probleimultiple
testing, Section 7 discusses a method to select change jaoiraing the candidates. Finally, Section 8 summarizesgloeithim,
runs it on a simulation example and on real data, and forrmsiatonclusion.

2 Multiscale binning: Haar wavelet analysis

Suppose we are given observatiansk = 0, ...,n — 1 of random variableg(;, that are Poisson distributed, i.e.,

—lk T
P(X; =)= =Lk

T (1)
xZ.
whereu;, = E X}, is the expected value of thgh observation, also called tlimensityof the counting process at locatién

The intensityu, is not constant, but depends on the location (or time p&intjore specifically, we assume that the intensity
is piecewise constant, i.e., consecutive observations thevsame intensity, except at some transition points:

e = fhr, fOrk =m0, .o Ty — 1, (2)

where < 79 < ... < 7 < 711 < ... < Tr < n — 1is asequence aR change points, and < R < n — 1 is unknown.
The change points are specified by the (integer) indexf the first observation from the segment with a certain isitgn In
other words, we are not interested in an estimate of the ewantent between,. — 1 and7,. where the change takes place.
Obviously, the exact values @f, are unknown. We want to estimate those values from the oéisens. A central question in
this estimation is to find good estimates for the locationsf jumps. Not only are these locations crucial as such foeisdv
applications, they also allow good estimates of the inteliate intensities.

The problem of detecting a jump can be formulated in termgadfssical testing. Given two observations andxy1, we
want to test the null hypothesid, : ur, = pi+1 against the alternativl,, : uy # pr+1. Since we have only two observations,
it is unlikely that those values are found significantly eifnt.

In order to increase the power of this statistical test, weiggolve the neighbors of these adjacent observations amgate
the sumse,—1 + xx andzi11 + xxr2. It is well known that those sums are again Poisson diskibutith intensities that are
the sums of the individual intensities. As the relative d&nd deviation (i.e., the standard deviation divided byitiensity)
decreases for increasing intensities, it is easier to tebamges in intensity after binning together adjacenspaipbservations.
If the difference between two adjacent bins of two obseovetiis still not significant, then binned observations cabibeed
again and so on. This leads to a multiscale processing.

Since we do not know the number of change points in the dasspdssible that at a given scgleghe sums of bingfil Thti
andeigl x—; contain one or more change points. The presence of neigithananges within the range of scalebviously
disturbs the test, = ur41 in locationk at that scalej. Since we cannot know in advance which scale is appropiiaite,

interesting to keep all levels of binning in a single multikc(or multiresolution) analysis of the data, so that we giak an
appropriate level of binning based on a full, multiscalelgsia. In the first instance, we consider the following depasition:



1. LetS;; = X be the finest level scaling coefficients. These coefficiergsiathing but the observations at locatidns
with £ = 0,...,n — 1. The integet/ is an arbitrary number assigned to the firssdle Subsequent coarser scales get a
lower index;.

2. LetS; = Sjt1.26+1 + Sj+1,21 be the summed values at levedf binned pairs at finer level + 1.
3. LetW; , = Sjt+1,26+1 — Sj+1,21 be the differences between scaling coefficients at Igvel

If such a difference is significantly different from zeroethwe know that somewhere in the interval covered by the &gsdc
two bins, a change point must have occured.
The decomposition is the Haar-wavelet-transform. To chveloither a wavelet coefficiemt’;  is significant, it is required

to normalize it:
Zjg =Wjk/\/Sjk 3)

The valuesZ; ;, have an asymptotically normal distributio [?] and their variance is constant if one leaves out the casesewvh
SjJC =0:
V(Zjk|Sjk #0) = 1.

As a conclusion to this section, we found that theltiplechange point detection problem is essentially a multiszaiblem:
subsequent change points occur after an unknown and aybiwaber of observations, i.e., at an unknown scale. Theidya
haar-wavelet transform is a computationally fast mullseaalysis of the observations, but — as argued in the fatigwection
— the analysis may miss change points. We therefore procetitbt(well-known) Continuous Wavelet Transform (CWT) in
Section 3. In Section 6 we further extend the continuous leaeamalysis to th&JnbalancedNavelet Transform, for a still more
powerful detection of change points.

3 Continuous wavelet analysis: wavelet maxima

The Haar decomposition presented in the previous sectiardisadictransform. This means that the computationligf ;.
involves a dyadic number of observations, i.e., the numlbabsgervations involved is an integer power of two. Also, the
subsequent coefficients at a given level are based on mytlisjbint sets of observations, starting at a dyadic lacet2/ 1

29" 1 29" 1
Wj,k = E Xk21*+1+21*+i - Xk2:‘*+1+z'a
i=0 i=0

wherej* = J — j — 1. These two properties obviously limit the power of the statal test, see Figure 2. If the coefficients
were not limited to dyadic locations and dyadic bins, we wladrtainly find a coefficient where at least one of the adjtoiers
perfectly coincides with a complete interval of constameisity.

The analysis with arbitrary locations and arbitrary lengitibins is a maximal discretization of the continuous Haavelet
transform. The continuous wavelet transform (CWT)@f) in general is a two-dimensional functid¥i (a, b), defined by

wian) = [~ v (52 s

— 00

wherey (t) is a wavelet function. In practice, the conditions for a filmrc to be a wavelet function, reduce to

/_O; b(t)dt = 0.
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Figure 2: The Haar-wavelet analysis is a dyadic analysgoéts not include all possible bins. As a consequence, tfexetices
between bins at coarse scales may not coincide with theaeations of transitions (change points).

The Haar wavelet is defined by(z) = xo,1) — x[1,2), Wherex a is the characteristic function on séti.e., xya(z) = 1if x € A
andx4(x) = 0 otherwise. IfX; are the observations from the functigiit), then maximal discretization of the continuous
wavelet transform leads to the following wavelet coeffitsen

i =1 i =1

Wik = Z Xbpjrti — Z Xotis
i—0 =0

wherej* =n—jandj=n—1,...,1.

Such a complete analysis allows to find at each sg¢dlee locationst where the normalized wavelet coefficienif,, =
Wi k/\/ Sk With S 1 = Zfi*o’l Xy+4, reaches a local maximum. The image in Figure 3 displaystiBelate values of the
normalized continuous Haar transform, where white pixelsespond to large values and dark pixels are close to zégord-
4 plots the coefficients at the coarsest scale. It illustritat for a low intensity signal with a small jump in interesst even at
the coarsest scales, the maximum values are not very pramiifi@ local maximum at a certain scale is sufficiently latgay,
if its absolute value is larger than 3), the correspondiegtion is marked as a candidate change point/dgtdenote the set of
indices corresponding to these selected maxima at gcake,

./\/lj = {k’ =0,...,n—1: |Zj,k| > |Zj,ki1| and|Zj,k| > 3}
In the presence of noise, the fine scales of the wavelet temgfave a lot of local maxima. In order to save computatioes,

first smooth the wavelet transform within the scale and camthe local maxima of that smoothed version. The obtainkdga
serve as initial estimates of the local maxima. In a secosg, ste compute the global maxima of the original, non-smedth
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Figure 3: A low intensity test signal with two change poirthe plot on the left hand side depicts the intensity curveglwith

a realization in 2048 data points. All observations aregats with values between 0 and 4. The figure on the right iswa gre
value pixel representation of the continuous wavelet faansg, where white pixels correspond to coefficients witlyabsolute
values.
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Figure 4: A plot of the coefficients at the coarsest scaleératalysis of Figure 3. Local maxima at this scale are marktdav
asterisk.



transform, in the neighborhoods of each of the provisiorestima and we replace the provisional values by their comeging

new values.

4 Lines of wavelet maxima

Before the final selection of significant change points tgiase, we first want to select the optimal scale for each chateli To

this end, the locations of local maxima are linked into linékcal maxima across scale [?], as in Figure 5.
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Figure 5: Consecutive steps in the construction of lines@dll maxima across scales. The horizontal axis containetagons,
the vertical axis depicts the successive scales. The segpsted in these figures operate on the geometry of the linlgsice.,
they do not take the values of the observed maxima into a¢coun

As the location of local maxima may shift across scales acal lImaxima may even disappear at some scales, the constructi

of these maximallines is non-trivial. On a non-discretizetmuous wavelet transform, these lines can be found kx&stcause

of the intensive noise, the heuristic algorithm ) page 632] is not sufficiently accurate in our applicatiomafTalgorithm
finds the correct lines of maxima if the resolution of the disization is sufficiently fine, but in the case of observasiovith
intense noise, the required resolution is generally finan the resolution of the input observations. We therefoeslriemore
sophisticated construction of maxima lines, so that it cad fhe correct lines even at coarser resolution levels. Topgsed
approach proceeds in five steps. Some of these steps aretehiaied by tuning parameters, which are filled in on a héasis
basis. Although a motivated choice may be a subject of fuithesstigation, the heuristically choices work well in nigaall
cases.

1. Eliminate:Eliminate maxima that are close to another, higher maximMiore precisely, remove a locatidnfrom M ;
is there exists another maximum € M; such thatk — m| < j and|Z; x| < |Z, .| The idea is that most of these
secondary maxima are due to noise and even if they reflectxdibeerrce of a change point, their contribution at finer
scales is relatively more significant. Indeed, at sgala wavelet coefficient centered at locatibrstretches beyond the
neighboring change point near location thereby accumulating the effects of two change points.

2. Connectlink local maxima at successive scales. Two maxima at ssaeescales are linked if both are the closest
maximum to the other one. More precisely, a maximum at sidtecationk; is connected to a maximum at scale- 1,



locationk; if and only if

k; = arg min |l —k;1/|, and
7 glEMj| It |7
kix1 = arg min [l — k;|.
J+ gleMj+1| J|

Figure 5(Left) shows the output of this process for the tgatple in Figure 3. The result is a s€bf maxima lines:

L={=1[(Le,kr,)s--, ki), (Jos k)] + by € M;
andk; is connected té; 1,5 = Ly, ..., Jg — 1}.

. DisconnectThe construction in Figure 5 has a few lines that jump from tmanother, clearly distinctive position.
Therefore, the next step disconnects local maxima if theeotion is an outlier among the lengths of connections in the
line of maxima. Figure 5(Middle) shows the result of thigost€he exact definition of an outlier is a matter of fine tuning.

. MergeMerge lines with (nearly) overlapping locations into a $&ge: some different lines show up at the same location,
but different scales, for instance if there is a gap betweates of local maxima.

Definition 1 Let£;,£2 € £ be two maxima lines. SuppoBg; = min{k|3j € {Ly,,...,Jo,} : £i; = (4, k)} is the left
most position o;, 7 = 1, 2. Similarly, k; » is the right most position on maxima line Two lines¢; and ¢, are said to
have nearly overlapping locations if

(a) for Ak; = ko ; — k14, it holds that
(k1,1 — Aky koy + Aky] N0 [k12 — Aka, koo + Aka] # 0.

(b) min{J;,, Jo, } — max{L¢,, L¢,} < r-min{Jy, — Le,, Jo, — Ls, }, With 0 < » < 1 a tuning parameter, which was
takenl/4 in our implementation.

The first condition of this definition is the actual (neargation overlap, while the second condition prevents palrtaties,
close to each other to be merge into a single line if they dstex the majority of their common scales. The algorithm
starts from the longest existing lines. If such a line doescomtinue all the scales down, we check if a bridge can be
constructed from its end point to another line with overiagdocations. If there is more than one candidate, take the
shortest bridge, where the length of the bridge betweerfisatbas:

, : ljo — j1

d(lo, 2) = B L b ey s # Mo - [kjo — kju |-
Note that the definition is non-symmetric: the jump acrosgescis weighted by the length of the initiating lil): short
lines are discouraged to catch up longer lines if there isgelgap in scales between them. On a scale with a high density
of maxima lines #£.M ;, large), bridges to neighboring lines are discouraged aiud)bs across scales are favored. Also,
a bridge can only start from the end points of the initiatimg I(the minimum is taken over a set of two end points). The
goal of the bridge can be any point on the other line. If twodidate lines can be reached by bridges of equal lengths, we
select the line whose average location over all scales sestdo the average of the original line that we want to extend
As soon as a candidate line of maxima is selected, the otiliieds completed by filling in the locations of the secondar
line at scales where the original line had no maxima. Thersday line is then removed from the set of maxima lines.
Experiments confirm, not surprisingly, that the output a$ gtep depends on which lines are taken first in consideratio
for extension. As a general rule of thumb, priority is giverihes that connect a lot of maxima already, lines that stiart
coarse scales and lines that have little variation in locatiat successive scales. The output of such a merging pneced
appears in Figure 5(Right).



5. SelectRemove lines where no maximum reaches a significant valye8.sé/e do not remove individual maxima based
on magnitudes only, because a small maximum may be a negéiagan the construction of an important line of maxima.

5 Maxima lines and change point locations

Once we have linked the maxima at successive scales, we legh the scale and location with the highest absolute nozetl
coefficient value. This is a new approach. Existing algonghbased on wavelet maxima, [?] follow the lines up to the
finest resolution level. The argument for following the Bngp to the finest level is based on a theory of pointwise reigyla
characterization. That means that, under some conditio@gontinuous wavelet transform, is able to charactenieedgularity
of a function in each point. Once we can quantify the regtylafia function in each point, we define a change point, aldeda
a singularity, as a point where the regularity of the funti®discontinuous. The regularity of a function in a poindéfined by
its Lipschitz coefficienty.

Definition 2 A functionf is (pointwise) Lipschitz at z if there exists’’ > 0 and a polynomiap,, () of degree| | such that
vt €[0,1] : |f(t) — p.(t)| < K|t — x|*. The Lipschitz coefficient is definedas= sup{a|f is Lipschitz:}.

The following theorem 7] states that all change points (i.e., all points with a diglity in the Lipschitz smoothness) must
have local wavelet maxima at sufficiently fine scales.

Theorem 1 Suppose (wavelet) € C? andy = 0®) with ff‘;o O(t)dt # 0. Let f € L1([0,1]). If there exists a scaley, such

that
Flu,s) = /_O; £t (t - “> it

has no local maxima for € [0, 1] ands < sq, thenf is uniformly Lipschitz onle, 1 — €] for anye > 0.

The theorem does not give any guarantee that wavelet maxisueeessive scales, corresponding to the same singuaiity,

can be connected into a maxima line. Lines can be interrugtsdme scales, or mixed up between nearby singularities. A
guarantee for the existence of proper maxima lines exidtseifwavelet function) is a derivative of a Gaussian functio®, |
Proposition 6.1], i.e., if, up to a constant and a scaling,

No such guarantee has been proven for other wavelet fuisation order to distinguish between data singularities andeoi
it is possible to look at the evolution of the maxima along@ If?, ?, page 171]. Indeed, discontinuities due to noise have short
maxima lines with main contribution at the finest scale. Wdale singularities generally have a long maxima line, whiee
maxima decrease across scale when moving to finer scalegvbhgion across scales is used to distinguish betweee aoid
change points, while the fine scales are used to locate tlog jpasition of the change points.

This approach is problematic in our setting for a few reasons

1. The characterization of singularities according to thagion of wavelet maxima across scales has been derivibeor
retical, noise-free situations. We are dealing with inéengise.

2. We do not use derivatives of Gaussian as wavelet functidhe Haar function that we use, is even not continuous, as
required by Theorem 1. As a consequence, we cannot be stitbéHacation of a singularity can be found by following
the maxima line up to fine scales. Moreover, due to the heaigena jump between two adjacent maxima lines at fine
scales is very likely to happen.



Because of these reasons, the procedure in this paper emnsicery maxima line, whether or not it continues to exidirat
scales. The exact location of the change point is not estidnly following a line up to fine scales. The estimation of that
location takes place at the scale with the maximum value ergiven maximum line, as explained in the next section. Also,
since maxima lines can be interrupted, several candidatgitms of change points may eventually refer to the samaggha
point. Such duplicates will be automatically removed dgtime selection of significant change points, explained tiSe 7.

6 Unbalanced wavelet analysis

Even the continuous wavelet transform may not be able tactiatechange points. Figure 6(a) shows an example of a wavele
analysis where one interval of constant intensity is fubbyered but the other (left) interval is not completely obeerby this
wavelet coefficient. If the difference between the intéesiin the two intervals is small, it may be crucial to estienbbth
intensities with the highest possible accuracy, i.e., thneekt possible variance. This can be done with a so-calledlanced
Haar transform?], defined by:

Ji—1

1
1% 1
Wiijrk = — Z Xitji+i — = Z Xhti
Ir o A —

for locationk, left scalej; and right scalg,..

)

I

(b) Unbalance

Figure 6: A symmetric wavelet analysis (bold line) is notioyatl for detecting change points. If one allows unbalancedyses,
the resulting wavelet coefficients may be more significantéf analysis covers two complete, adjacent intervals oftao
intensity. This may be crucial in change points with smathjs.

We now try to find all significant values d¥;, ; . A straightforward calculation of these values would reg@(n*)
computations. The subsequent optimization would be coatiomially impossible for large values of If we limit our search
by starting of from the previously selected wavelet maxithan this becomes an easy optimization. In a first step, wienag
over the two scale valueg, andj,, leading to a left and right end point. In a second step, we th& opportunity to further
optimize the locatiork, within the optimal end points. In principle, this two stapgedure could be iterated, but in practice, one
iteration is sufficient. The reason for optimizing over thedtionk has to do with the difference between our procedure and the
maxima propagation methods described in Section 5. As exqalain theory and in low noise level cases, the exact lonaif
the change point is best estimated by following the maximasliup to the finest scale. At coarse scales, the maximumdealan
wavelet coefficient depends on a wide range of noisy obsensand therefore may be shifted with respect to the achaige
point location. As explained in Section 5, following thedsup to fine scales suffers from practical problems in owe.dastead
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of following the maxima line to finer scales, we optimize viitithe given scale by letting the analysis to be unbalandefis|
the current maxima line, then the positibis optimized over a set

K, = {k S ZE] S {Lg, .. .,Jg} : fj = (j,k)} (4)

In other words the search for an optintafjivenj; andj,., is limited to those values df that are reached by the line of maxima
we started from. This search restriction avoids that we gnéhia point on a neighboring line of maxima, thereby possibly
missing a change point.

The normalized coefficients in an unbalanced analysisvicfiom a general expression ifi]] We now have two scales, left
and right, denoted ag andj,, and the unnormalized wavelet coefficients are:

Jp—1 g —1
173 1§
Wisjek = = Y Xepjiri — = D Xita,
Jr iz TS0

wherej; = n — j; andj; = n — j.. Note that we use averages instead of sums as before. Agpledymmetric analysis,
a difference of averages is just proportional to a diffeeeatsums. This is no longer the case for unbalanced analybese
taking differences of sums would not lead to proper wavelefficients: indeed, the coefficient would not have a zer@etqiion
if the intensities are the same on both sides. The normalizet now:

Wi i &
_ JisJry ..
Zjijek = = VI -

St sk

The output of this step is a set of candidate change p@ints {1, ...,n}, each with a valugZj, ; r, — which is a measure of
significance, and each corresponding to a line of local maxim L.

7 Selection of change points

The last phase of the algorithm is the selection of chang&goCandidate change points are given by locations of loaaélet
maxima and the unbalanced extension indicates the rangehafrege point. As Figure 7 indicates, two successive chaoigésp
may reinforce each other’s significance, by sharing obsiens This occurs if two successive change points are hottpg

up or both jumps down, thereby forming a staircase. Amongatididates, the most significant one, i.e., the one with the
highest absolute;, ;. ,-value, is selected as primary covariate, and its locasoroiv considered as an inpenetrable boundary:
the significance of the adjacent candidate change pointseeacaputed within this new situation. This prevents ingigant
candidates from being reinforced by a significant neighbdadeed, as the more significant neighbor is also reinforged b
this insignificant candidate, it&;, ;. »-value remains the larger of the two, so that it is selectedd. fiAt that moment, the
insignificant candidate loses its reinforcement. The rgmatation of theZ;, ;, .-values after the selection of a candidate includes
a recomputation of the most significant position for eachai@ing candidate.

A natural question arising from this procedure is how manydi@ate change points should be included. One way to look
at this, is to view the procedure as an example of a multimguential testing procedure. The selection of change point
then continues as long as the correspondiig ;. »|-value is larger than a threshold of significance. The desigm proper
threshold, with appropriate statistical limit propertissfar from trivial in the given settings. Moreover, thigéshold would not
be adaptive to the actual data. The selection of candidategehpoints should depend on the actual data. More precistly
T c {Ty|¢ € £} denote the current set of selected candidates ariti fet# 7. Based on this set, an estimgtef the unknown,
piecewise constant Poisson intensity vegipdefined in Equation 2, is given by

ﬂk = /lT(T)a fork = T(’I“)7 s 7T('r+1) - 1) (5)
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Figure 7: Selection of most significant change point and tepdbthe range and significance of the remaining candidates.

whereT(, are the ordered elements of the current selecfiand

Tr+1y—1
1

iz, = ————— Xy (6)
(r) T(T+1) - T(T) k—;m

The quality of the selectioft is measured by the quality of the fitcompared tq:. In theory, an optimal selection minimizes an
error norm|| & — p|| (typically thels-norm). In practice, the vectqr is unknown, so the exact error norm cannot be computed
and minimized. The optimal selection is then estimated ab#st compromise (according to a given criterion, expthiredow)
between closeness of fit to the input data and sparsity. @ésseof fit is measured by the log-likelihood function, whighin

the case of Poisson observations,

LL(A) = > (i + Xy log fir, — log Xy!) . 7
k=1

This likelihood on its own is maximized if the selection etputhe set of all points of observations, i.e.Tif= {1, ...,n}, which

is obviously too large. Therefore, the likelihood is peradi by the number of selected candidafes,The expression used in

this paper for the compromise between likelihood and pgigthe AIC (Akaike’s Information Criterion)7].

AIC(f1) = —2LL(f2) 4 2R. (8)

In our problem, the AIC values can be plotted as a functiomefrtumber of selected change points. An example of such a plot
corresponding to the data in Figure 1 is depicted in Figurda @rinciple, we should pick the number of selected changetpo
with the absolute minimum on the AIC curve. As the exampleiguFe 8 illustrates, however, after an initial clear destehe
curve is quite flat in the neighborhood of the minimum, witmeeally more than one local minimum. This situation makes th
eventual decision dependent on noisy fluctuations. Moredvs known that the AIC procedure has a tendency to ovesdit,

to select too many change poinf.[ For these reasons, we do not select the global minimumeoAllC curve, but rather the
first local minimum. In the simulation study, described bglthis procedure gave nearly identical results as obtaiygdlobal)
minimization of the BIC (Bayesian Information Criterior®) [

BIC() = —2LL(f2) + log(n)R. 9

In some simulation runs, the AIC based procedure in this pfpds a change point overlooked by the BIC.
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Figure 8: Plot of the AIC values as a function of the numberelésted change points. The procedure picks the first local
minimum of this curve as an estimate of the true number of gaaints.
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8 Discussion and simulations

Before discussing the performance of our proposed alguorith a simulated test example, we summarize the successpedait
the algorithm.

8.1 Overview of the algorithm

Given a vectorX of n independent Poisson counts with intensijiesit equidistant locationdl, . . ., n}, the algorithm estimates
locations and size of changesn The algorithm proceeds in the following steps.

1. Compute a discretized version of the continuous Haastoam. The discretization along the location axis equags th
discretization of the input. The discretization along timeet axis is a tuning parameter of the algorithm. The finer the
discretization, the larger the probability that all maxitimes correctly link maxima at successive scales. Wgt,, with
k=1,...,nandj € J C {1,...,n} the Haar coefficients at scalgsnd locations:. (See Section 3) Normalize the
coefficients according to Equation (3). L8} ;, be the normalized coefficients.

2. Pre-smooth the datd; ;, within the scalgj and defineM; the set of locations corresponding to a local maximum of the
smoothed coefficients; ;,, at scalej. (See Section 3)

3. Connect the maxima at successive scales, using the stepgeeated in Section 4, leading to the Sedf maxima lines.

4. (a) Oneach maximalinec £, find the maximum normalized coefficiemtax ; , o |Z; k|-

(b) Starting fromZ; , as initial value, find the maximum normalized unbalancedfmment Z;, ;. ;. in the same neigh-
borhood, as described in Section 6.

5. LetT = 0 be the current set of selected change points.
Repeat

(a) Find€ € £ with the largestZ;, ;, ,-value and definé, = k.
(b) Computeir based o7 U {7}, using Expression (5).
(c) If AIC(jx) decreases compared to the previous value, thep let7 U {T,}, L = £ — {£}.

(d) Ifforany¢’ € L, T, € Ky, with K, defined in (4), then recompuie: andZ;, ;, 7, as explained in Section 7 and
Figure 7.

until AIC(f1) increases.

8.2 Simulation study

Table 1 and Figure 9 summarize the results of 200 rund oa 4096 Poisson observations from an intensity function equal to
the Block test function?, page 430plusa constant value of 3.5. Except for the 10th change pointr{ge®ering in the figure),

all change points were detected in every run of the expeiim#&a conjecture that this is essentially the best possésalt in

the given setting of piecewise constant intensities withlsignal-to-noise ratios. Other change point technighaswe tried

did not cope well with the heavy noise. The 10th change poa not recovered in all runs. The algorithm always found a
maxima line corresponding to this change point, but theesponding candidate change point was not always seleated,is
was not always sufficiently significant: the candidate warkea among noisy candidates behind the first local minimuthef
AIC-curve. Nearly 20 % of the reconstructions also showeel @ma few false positives. Those false positives appeaeiMIiC
curve does not have a local minimum after the 10th or 11thgddimg on the number of detected true positives) insertadg
point.
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Figure 9: Summary of 200 simulations. The vertical lineg fiie positions of the estimates of the 11 change points isitjrel

of Figure 1. Not surprisingly, the variance of the estimagpehds on the altitude of the jump, and the width of the irterv
bounded by the two adjacent change points. Change pointeuhdds not always detected, see Table 1 for numeric defdiks.
dashed line on the figure is (a scaled version of) the undweyiyitensity function.

Number of missing change points
Number of false positives 0 | 1 -
0 60 20.5( 80.5
1 12 35| 155
2 3.5 0| 35
3 0 0 0
4 0.5 0| 0.5
[ -l 76 | 24 [ 100 |

Table 1: Percentages of reconstructions subdivided atmpral number of missing change points and number of falsiipes

15



2 2t i
c
=}
o
(8]
k]
(0]
Z
(&
(%]
S 1t
0 W | | |
0 1 2 ) 3 4 5 6
time (microseconds) % 10°

Figure 10: A real data example. The observations are codipisatons within 65 536 time spans of one microseconds. These
photons were registered by a confocal microscope checksodugion for the presence of single fluorescent molecules.

8.3 Detection of single molecules in a solution

The countdata in Figure 10 are the number photons detecteddyfocal microscope within 65536 time spans of one microse
ond. Within the total time of 65.536 milliseconds, a totahther of 164 photons were registered, so the count process\eay
low intensity. Yet, we suspect the presence of a few molacwéich are characterized by change points in the intensitye
(see the Introduction).

The change point detection procedure described in thequesgections reveals the simultaneous presence of threeuhed
in the focus, see Figure 11. A fourth passage of a moleculetexted at a different time point. The background noisensitg
before and after the passages of the molecules is remarkaibdgant.

8.4 Directions for further research

In order to detect changes in piecewise smooth, not nediggsigcewise constant functions, or in order to detect nwratle
changes (i.e., changes in a derivative, rather than plagodtinuities), it is necessary to use smoother waveldts construction
of unbalanced versions of such wavelets requires the useofqtion methods to ‘stretch’ existing balanced wavelkesib
functions P2, ?, ?]. An alternative for this projection, is the use of the fifi scheme, ?, ?], which constructs new basis
functions adapted to irregular (or unbalanced) data.

A second direction of further research is to incorporatellaafualysis of the evolution of coefficients along a maxinreeli
Indeed, it has been proveR, [?, page 171] that this evolution across scale offers additioriormation about the character of
the singularity, which can be used to distinguish betweasenand signal jumps.

16



0.1

o 0.081 B
2
]
o
2
‘7 0.06 B
c
3
£
2 0.04F .
©
£
7
()
0.021 i
0 " r I I I I I
0 1 2 3 4 5 6
time (microseconds) % 10°

Figure 11: Change point detection and intensity estimdtiothe data in Figure 10.

8.5 Conclusion
This paper has elaborated a fast, multiscale based seardtéb maxima of normalized differences of the form
Ji—1

1
1% 1
Wi jek = = Z Xiji+i — = Z Xoyi-
Irizo Ly

The search for local maxima proceeds through a ContinuoueMfaTransform, extended towards an Unbalanced Wavelet
Transform. The method does not involve wavelet threshgldit concentrates on the local maxima of the coefficientisimvi
each scale. Through the construction along lines of maxihgagesulting values are maxima with respect to adjaceatitmas
andadjacent scales. These local maxima point at a possiblédoaaf a sudden change in the underlying intensity of thegiv
data. Candidate change points are selected in order ofdiggiificance, until the AlC-value of the resulting fit reastzlocal
minimum. Simulations illustrate that the method is vergefive in cases of a low signal-to-noise ratio.
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