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Summary. For regularly spaced 1D data, wavelet shrinkage has proven to be a compelling
method for nonparametric function estimation. We create three new multiscale methods that
provide wavelet-like transforms for both data arising on graphs and for irregularly spaced spa-
tial data in more than 1D. The concept of scale still exists within these transforms but as a
continuous quantity rather than dyadic levels. Further, we adapt recent empirical Bayesian
shrinkage techniques to enable us to perform multiscale shrinkage for function estimation both
on graphs and for irregular spatial data. We demonstrate that our methods perform very well
when compared to several other methods for spatial regression for both real and simulated
data. Although our article concentrates on multiscale shrinkage (regression) we present our
new ‘wavelet transforms’ as generic tools intended to be the basis of methods that might benefit
from a multiscale representation of data either on graphs or for irregular spatial data.
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1. Introduction

1.1. Background
Over the last decade a large variety of wavelet methods he®e imtroduced to several different
areas of statistics such as curve estimation (regressemsityf estimation, intensity estimation,
survival function estimation), time series analysis, fiotal data analysis, and image warping.
See, for example, Vidakovic (1999), Silverman and Vassdi(2000), Percival and Walden (2000),
Abramovich et al. (2000) for reviews. Nearly all work in thatsstical area has been based on the
fast discrete wavelet transform (DWT) invented by Mall&@&®). The major exception being work
in statistical inverse problems, which has relied on Fauransformation and Meyer wavelets, see
Johnstone et al. (2004) for a recent review.
Existing work in wavelet-based function estimation hasdgjty made use of the following

model and assumptions. Le{t) be some function that we are interested in for saneg¢her on
R or some intervala, b]. Suppose; is iid Gaussian with mean zero and constant variarfce_et
t; = i/n. We observe

Yi =T T € (1)

wherex; = x(t;), y; = y(t;) andi = 1,. .., n. Key features of this model are that
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(a) the number of observations,is a power of two, say = 27 for someJ € N. This restriction
is not too difficult to overcome even when using fast wavebatsforms.

(b) the data are observed on the regular grig= i/n. This assumption enables direct use of
standard wavelet (and Fourier) discrete transforms. Wtsa dre irregularly distributed
various methods, such as binning or interpolation to a segurid, have been proposed. For
example, in 1D, Antoniadis et al. (1997), Hall and TurlacBqZ), Cai and Brown (1999),
Sardy et al. (1999), Kovac and Silverman (2000), Antoniadid Fan (2001), Pensky and
Vidakovic (2001), Nason (2002), and Kohler (2003).

In 2D Herrick (2000) extended the interpolation method of#®and Silverman (2000) to
2D but found the resulting procedure too computationaligrisive to be of any practical use.
Recently a new “second-generation” wavelet-like paradégtfed “lifting” has been devel-
oped, which can handle multidimensional irregularly spladata that commonly arise in
statistics. For a quick introduction to lifting see Sweld¢h996). Lifting is the mathematical
foundation of our work and it is described in more detail hwitferences, in Section 2.
Adaptions of lifting to curve estimation problems in 1D arsadissed in Vanraes et al. (2002)
and Delouille et al. (2004). For lifting half-regular desgytensor product of two 1D irregular
designs) see Delouille and von Sachs (2002). In 2D curvenatitin with lifting has been
tackled by Delouille (2002) and Delouille et al. (2003):sthork and the current article both
develop and build on Jansen et al. (2001).

(c) the error distribution is iid Gaussian with zero mean aadstant variance. Various authors
have weakened these assumptions. For example, see JahasiiSilverman (1997) for
correlated noise; Neumann and von Sachs (1995) and Averkadhploudré (2003) for non-
Gaussian noise.

The main advantages of using wavelets are their excellentétical properties, excellent empirical
performance both for smooth functions and also those wébdtitinuities or other inhomogeneities
(even whena priori, it is not explicitly known whether the function is smoothrast) and very fast
computational speed.

1.2.  Our main contributions

The main contributions of our work can be summarized as\igdloWe introduce (i) a wavelet-
like transform for data on a graph; (ii) wavelet-like tramshs for irregularly spaced data in two-
or higher-dimensional space; (iii) statistical methodsftmction estimation adapted to these new
wavelet-like transforms. Our proposed methods perforry wesll, they are rotationally invariant,
extremely fast and memory efficient, can provide credibterirals as well as ‘point estimates’
through empirical Bayes and can very easily be extendeddosmother basis functions. See
the end of this section for a discussion of the pros and cormupinethods compared to other
techniques.

The multiscale concept is particularly powerful for datattarise on networks permitting, for
the first time, the description and quantification of struetwithin a graph at several scales and
locations simultaneously. From now we shall be solely come@ with Gaussian iid noise but
several of the techniques mentioned above for generaltbmgistributional assumptions could be
made to work efficiently with our technique.

A key concept in many spatial regression contexts, inclgidiars, is that of neighbourhoods.
That is, given a point which other points are “close” and Whice its neighbours? In 1D, with
the order relation ofR, neighbourhoods can be more straightforwardly defined.cl¢mest points
to a given point are smallest/largest point greater/leas the given point. In more than 1D there



Multiscale methods for graphs and irregular data 3

are many possible neighbourhood concepts that could be (Baahe problems come with their
own neighbourhood structure. Where there isanpriori neighbourhood structure we use either
Voronoi polygons or minimal spanning trees (MSTs) to defiagghbourhoods, which are utilized
by a lifting technique.

We also carefully analyze the variance structure of thediftvavelet coefficients and develop
a novel Bayesian wavelet shrinkage technique, which warkeé absence of formal scales (for
irregularly spaced data the dyadic scale concept is adifici

1.3. Other methods for function estimation

As the previous section highlights one of our goals is to usenewly created lifting/wavelet trans-
forms for function estimation. For function estimationthexists an enormous range of alternatives
developed across a huge range of disciplines including nrastatistics. The ones that we have
considered, and compared to our methods, in writing thigpape: loess by Cleveland and De-
vlin (1988), triograms, see Hansen et al. (1998) and KoeakdrMizera (2004), locfit, see Loader
(1997), thin-plate splines, see Wahba (1990) and Green dwvel8an (1993), and kriging, see
Cressie (1993). The latter two sets of comparisons are tounadfin Heaton and Silverman (2008)
the others in section 7. There are many more possibiliti@sexample partition models, Denison
et al. (2002), stationary and non-stationary Gaussiangssms, Gaussian Markov random fields,
see Rue and Held (2005) and empirical orthogonal functi&i®Hs), see Jolliffe (2002) and, for
graphs, network kriging, see Chua et al. (2006).

Although our methods compare favourably to the first list @fthods listed above our main
aim is not to conduct a ‘regression olympics’. As well as depig a new regression method
our main goal is to introduce new multiscale algorithms (foaph and irregular data) and several
of the techniques listed above could be used in conjunctiitim @r new multiscale algorithms.
For example, one might wish to construct a Gaussian Markegam field model on the ‘wavelet
coefficients’ of a structure.

However, we do believe that our methods have a strong setvahéaes:

(a) our methods are fast and efficient in storage and for thiéiscale part requiré?(n) op-
erations forn sites. For the Voronoi version, the Voronoi tessellation ba computed in
O(nlogn) operations, see, e.g., Fortune (1987). It is not always tmdiscover the com-
putational complexity of some of the methods listed aboveweler, EOFs are based on
eigenvector determinatiold(n?)), loess is quadratic in storage and some of the above algo-
rithms rely on variants of MCMC, which do not scale well togamproblems.

(b) our methods are rotationally invariant. Some of the &boethods are not.

(c) our methods are easily extendable to smoother ‘prediad’ ‘update’ steps (see later for an
explanation of these). For methods such as triograms egtent smoother basis functions
are not trivial, see Hansen et al. (1998). Moreover, our pagltan even be further developed
to adapt to local smoothness conditions by usad#ptivelifting, see Nunes et al. (2006) for
this in 1D.

(d) on arange of real and simulated examples reported ind®ettour methods work well. The
examples include both discontinuous and smooth functidins. reassuring that a method
developed to allow for possible discontinuities also woekhin the smoother case.

The main disadvantage is that, apart from analogies withlaegvavelets, there is currently no
substantial body of theory behind our methods. We discussehasons for this in section 8, but
some theoretical remarks are addressed in section 5.
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Fig. 1. An example krill intensity sampling scheme. The island of South Georgia is shown in the
bottom left of the plot. Each sample is indicated by a circle and the diameter, which is proportional to
the density of krill detected at that location. (Figure kindly supplied by Alistair Murray, British Antarctic
Survey)

1.4. Krill intensity estimation example

We first consider an example that existing wavelet techrsiquauld find hard to solve and other
statistical techniques, such as kriging, might find chajieg. Goss and Everson (1996) describe
an experiment designed to quantify the amount and distoibuf krill in the south Atlantic ocean
around South Georgia. Figure 1 shows the interesting samgisign and a depiction of the de-
tected krill density. Clearly, the design is very far fromirtgea regular grid, but iloeshave a very
strong structure, which one might wish to take into accoulnémvperforming spatial regression.
For example, in some applications one might be interesteelgression on the transect itself, or in
regression over the whole domain of definition excludingspmably, the island, where it is known
a priori that the krill intensity is zero. Indeed, the presence afcttrre or a hole in the data (e.g. is-
land) would be challenging for more global multivariatenesgion techniques. Our techniques can
take account of various kinds of structure of this sort amdeguplied to this data set in Section 7.1.

1.5. Structure of the article

Section 2 first reviews lifting and then introduces our édoiaon the theme: “lifting one coefficient
at a time”, then describes our scheme for irregular spasite end graphs, and finally describes an
efficient computational approximation for the variance af &fting coefficients. Section 3 de-
scribes our version of lifting to be applied to a function ograph (a network). Such a network
might be constructed from, e.g. irregularly spaced dataiidiBean space or the data itself might
naturally arise in the form of a network. For example, in & trainsportation network one might
think of stations either as irregularly spaced points in pBce or one might think of them as nodes
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in a network where the edges are railway lines. For irregdéda in Euclidean space Section 4
uses a Dirichlet tessellation to define neighbourhoods andtaucts a lifting transform using those
neighbourhoods. Successful wavelet shrinkage dependsash @mpression abilities of the un-
derlying wavelet transform. Section 5 explores the théoakbasis for our work and describes
some compression studies. Section 6 details the new tagmihat we use to perform coefficient
shrinkage on “one coefficient at a time” lifting transformScale” in lifting can be more of a con-
tinuous concept and the fixed dyadic scales of the regular D@/Tonger exist in our work. We
describe several empirical Bayes methods designed to witiiklve more general concept of scale.
Section 7 contains a real life example and summarizes desieralation studies. The real example
considers regression of the krill data where coordinatermétion is used. A further real life ex-
ample, concerned with denoising of train delay data on anetivork can be found in Jansen et al.
(2008). Finally, section 8 concludes and provides idea#ufither work.

2. General discussion of lifting

2.1. The lifting approach to the standard discrete wavelet transform

Let us begin with a general specification of lifting as it hagib considered previously. Given a
vectorz of data, we divide the indices afinto two subsets, denotddand.J for the moment. For
example, in 1DJ might be the odd indices anfithe even. Denote by’ the vector(z;,i € I) and
z” the vector(z;, j € J). A single lifting step works as follows:

Predict Usex” to yield an appropriate predict@! of !, and the residual i6r!)* = 2! — /.

Update Updater” by adding tar”’ a suitable linear transform ¢f:/)*.

A specific example is the Haar transform of the data. Supguseriginal vector: is of length
16 (for definiteness). Initially, definto be the odd indice$l, 3,5,7,9,11,13,15}, and.J to be
the even indiceg2,4,6,8,10,12,14, 16}. The prediction is carried out by estimating each odd-
indexed element by the next element in the sequencé;,s01 = x2,, form = 1,...,8. Hence
the modified coefficient§xz!)* are given byzs,, | = 29,_1 — Z2,,. These correspond to the
‘detail’ coefficients in the Haar transform of the data. Tipelate step is defined by

* _ 1, .% 1
Loy, = T2m + 5Lom—1 = §(x2m—1 + I’Qm)

so the(z”7)* represent ‘scale’ coefficients at the next level, a smooteesion of the original data.
The lifting steps can be performed ‘in place’ by the two assignts

ol =al — 2’

followed by 27 := 27 + 3a'. 2)
For the next step of the Haar transform, we proceed in extiitlgame way, setting= {2, 6, 10, 14}
andJ = {4,8,12,16}. These correspond to the odd and even indices of the scalticoar@f at
the previous level. We then continue the cascade by sefting {4, 12} andJ = {8,16}, and
for the final step/ = {8} andJ = {16}. This completes the entire multiresolution analysis of the
original vectorz, and the coefficients obtained are, in a suitable orderatedosersions of those
obtained by the Mallat discrete wavelet transform. At eaalyes of the process, the current scale
coefficients are divided into two equal sets, one of whichrig&pssed in the predict step to give the
detail coefficients, and the other is updated to give theesoafficients for the next stage.

The description we have given uses the Haar transform fgplaiity, but all classical wavelet
filter banks can be factored into a sequence of lifting stegs,Daubechies and Sweldens (1998).
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An attractive feature of lifting is that the inverse transificcan be constructed mechanically. The
step (2) is inverted by reversing the assignment order, badging the signs, to give

J J_

r =T 1 1

12! followedby 2z’ :=2"+2’. (3)

To invert the whole transform, the steps are consideredefiposite order, starting with= {8}
andJ = {16} and finishing with/ = {1,3,5,7,9,11,13,15},andJ = {2,4,6,8,10,12, 14, 16}.

2.2. Lifting one coefficient at a time
When considering the standard wavelet transform, the sersd J correspond to odd and even
indices at the current level. We shall consider a differ@praach, where each séts just a single
coefficient. The general paradigm we adopt will be as follows

The first step is to construct an ordgy, . . ., 7041 in which the wavelet coefficients, or their
equivalents, will be obtained. Our reason for numberingirerse order is the analogy with scale
levels in the standard wavelet transform; the first coeffisi¢o be found will be those corresponding
to the finest level of detail in the function, and at the endhef procesg coefficients will remain,
corresponding to the scaling coefficients at lefzel

For eachi,., we construct, by some appropriate means, a set dfieighbours’J,., which may
not contain any; for s > r. The underlying notion is that the valuesfor j € J, may reasonably
be used to construct at least an approximate predictiory,of For eachr, our lifting transform
requires the definition of two vectotd andd”, each of length,..

At each stage, the transform consists of the same two stepew@susly, firstly redefining:;
to be its residual from the prediction from its neighbours] ¢hen updating the neighbour values
appropriately. To avoid notational clutter, we suppresskplicit dependence anof 4, J, a andb.
The step of the transform can then be written

Predict: x; := x; —a’z’ followed by Update: 7 := z7 + z;b. (4)
Again, just as before, the inverse of this transform can bgemrdown mechanically, by revers-
ing the order of the steps and changing the signs:

z) =27 —x;b followedby z; :=x; +da'z”’. (5)
For computational purposes, it is convenient to specify stode the transform in a standard
format, as a ragged array with— ¢ rows. We call this thdifting coefficient array The sth row of
the array corresponds to= n + 1 — s and consists of the sequence3af. + 2 integers

i n. J oa" b

The computational burden of lifting is the same in order ofmitude as the number of elements in
the lifting coefficient array, and is certaindy(A/n) whereM = max{n, }.

In the remainder of the paper we will consider ways of cortsiing the lifting coefficient array,
with particular attention paid to the case of spatial irlagdata. Even the Haar transform as already
discussed can be calculated one coefficient at a time. Thez oravhich the indices are considered
would be first the odd indices, in any order, then the indicasdivisible by 4, then those not
divisible by 8, and so on. In every case each index would haiegie neighbour, so that. = 1,
and we would have, = 1 andb, = % The neighbout,. would be, in every case, the smallest
integerj > i, thatis nota member af. 1, ..., ,.

Further information on lifting in more than 1D for data notalattice can be found in Daubechies
et al. (1999). For data on a lattice see Uytterhoeven anchBellt(1997) and Kovacevi¢ and
Sweldens (2000)
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2.3. Aspects of lifting transforms for spatial irregular data

In this section, some specific issues relevant to liftingdfarms for spatial irregular data are con-

sidered, but the discussion has wider validity for methaasell on neighbours in any sense.
Suppose that we have valugsof a function at: points, orsites t; Initially, we assume that the

function is approximated by an expansion of the form

k=1

whereg,,;, are scaling functions such that
Gk (ti) = ik, (7)

whered;;, is the Kronecker delta, at least approximately. If the spfunctions satisfy (7) exactly
then the functioryf will interpolate the valueg; if we sete,, = fix. Denote byl,,; the integral of
onk. With respect to some suitable measure.

The stages of our procedure are numbel@dnwardsromn, so the first stage to be carried out

is stagen, followed byn — 1,7 —2,. ... At stager, letS, be the indices of the scaling coefficients,
in other words those indices for which no wavelet coefficieas yet been calculated. Initially
S, ={1,...,n}. LetD, = {iy11,...,in}, the indices of the detail coefficients already found.
We assume that we have an expressioryfof the form
F@) =" dee(t) + Y condra(t) ®)
LeD,. k€S,

where they, are wavelet functions with zero integral, and the are scaling functions at leve|
with integrall,,. We now set out the process whereby the various quantitiestibns and sets are
updated to the next stage, whereby we find an expressionspomding to (8) but withr replaced
byr — 1.

Firstly, choose,. to be the value ok that minimizesl,.; overk in S,.; writing i« = i,., the next
wavelet coefficient to be constructedds, say. At every stage, we eliminate the scaling function
with smallestintegral. S&,._; = S, \ i, andD,_; = D, U ,..

Let J, = J be the set of neighbours @f as specified in the lifting coefficient array. The
specification of/,. and the weight vectat” will depend on the particular lifting strategy we adopt,
and will be discussed in subsequent sections of the papercaWalate the coefficient;, in the
way specified in (4), setting

di, = Cri, — Z a§crj (9)
JEJIr
and, forj in J,.,
Cr—1,5 = Crj + bjdir- (10)

For all otherj in S,_; we setc,_1 ; = ¢;.

If the function f (t) is constant in the neighbourhood of the dite we would wish the wavelet
coefficient to be zero, so we conduct the predict step witht afsereights satisfying - a’ = 1.
With judicious choice of weights we can obtain a zero coedfitfor locally linear functions and a
near-zero coefficient for locally smooth functions, busthill be discussed below.

We next set out the way the scaling functions are updatedafpfixed; € J,., consider the
special casgf(t) = ¢,_1,;(t). For thisf, from (8), we have:,_; ; = 1 and all othere,_4 ,,



8 Stefan Wager

s # j andd, equal O fors = i, ...,4,. Hence, inverting the lifting steps,; = 1, from (10), and
cri, = a; from (9). Therefore, by the expansion (8) for
Gr-1,j = Grj + ajbri,.. (11)

To find the integrals of the scaling functions at the nextetagegrate (11) to obtain
17'—17.7 = [7-j + agl,.“ for eaChj € J,. (12)

Forj in S,_; that are not members of., the same argument Wittgf = 0 this givesc,; = ¢,—1,;
as well as:,;, = 0. This implies thaty,_, ; = ¢,; andl,_1 ; = I;.

To find an expression for the wavelet, we now consiflef 1, , so thatd; = 1 and all other
coefficients at stage— 1 are equal to zero. From (10) we then haye= —b’; for j in J.. Equation
(9) then gives:,;, =1 -3, ; ajb}. Therefore we have

Gi,(6) = (L= Y afb))dri, (t) = D bidr(t)

Jj€Jr JEJr
= Gri (t) = Y (6 () + @b, (1))
JjeJ,
= (bmr Z br(br 1, j (13)
Jje€Jr

by substituting the expression (11).
The weightsb are found from the requirement that the integral of the wetvisl zero. By
integrating (13), this requirement is equivalent to

Z br r 1,7 — mra (14)

Jj€Jr

where the integral$,_; ; have been found using (12). For reasons of numerical dighile use
the minimum norm solution of the equation (14), setting

0y = Iri Ir—15/ Y L7y g (15)

keJ,

Within the process it is not necessary to express the wavetetcaling functions explicitly, but
the integrals of the scaling functions choose the coefficieand to specify the weight vectéf.
Therefore, in order to initiate the process, the integfgjf the original scaling functions need be
specified. Apart from these integrals, we also need apm@tganiays of choosing the vectafs and
a” of neighbours and prediction weights at each stage. We stiadlider two particular approaches
in detail later in the paper, the first based on Voronoi pohgyand the second on MSTSs.

Finally, there are circumstances within which it is helgfuhave a notion of the scale of each
wavelet function. A convenient measure of this scale fomaeelety; for i, is the integrall,.;, of
the scaling function for sit¢. at the last stage befoige is removed from future consideration. We
denote this scale hy;, . In the natural neighbour method described later,will be the area of the
last Voronoi cell based on sitg. In general, for any fixed, and assuming all the weighis > 0
we have

oj=1Ip_1; _ >1;_ 21, =q

and so the scales; are a monotonic function of the |nde>and the order in which lifting determines
the coefficients.
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2.4. The dual basis functions

The lifting procedure can be thought of in two ways. On the baed, if we have a functioff

of the form (6), then expansion (8) gives an expressioif of terms of a multiresolution basis,
where effects of different scales are captured by diffeventelet coefficients. On the other hand,
consider lifting as a linear tranformation of a vecton@afluesz, yielding a coefficient vectot,
say, whose elements have a multiresolution interpretafioreither case the relation between the
original function or data, and the derived coefficients, barelucidated by investigating the dual
basis functions or vectors. More can be found in Section PJasen et al. (2008).

2.5. The variance of the sample coefficients
In this section, we set out an approach, which operat&3(it{) time and storage, for finding,
approximately, the variance of each wavelet and scalinfficeat as obtained by lifting. Of course,
because lifting operates linearly, for reasonably smath dats it is possible to calculate the full
covariance matrix of the coefficients by successively d¢agyout on the covariance matrix the
row and column operations corresponding to the lifting stephis is a much more burdensome
calculation, requiring)(Mn) vector operations on vectors of length but makes it possible to
evaluate the usefulness of the approximate method.

Suppose that the original data are independent random variables with variarigesConsider
a single lifting step of the form (4), writing* for the values after the lifting has taken place. Since
T} =3 — ) ey a;x;, we have

varz; =V + Y a3V;  and  covx},x;) = —a;V;. (16)
JjeJ

Sincex} = z; + by, it follows that
varzs = V; + bivarz; + 2b;cov(x), x;) = (1 — 2a,b;)V; + bivara;. (17)
It follows that the effect of a single lifting step is to repathe variances by;”, where

Vi o= Vit Xe, 0l
Vi o= (1—2a;b;)V; + b3V forje J.

J

(18)

The approximation we use is to neglect any correlations éetwthe coefficients obtained at the
next stage, but simply to iterate the calculations (18).sMiil yield an algorithm essentially of
the same complexity as the lifting algorithm itself, andded that can similarly be carried out in
place. Some experiments on lifting arrays obtained fronoNor polygons, in the way discussed
later in the paper, demonstrate that only a little accuradgst, mostly in the large-scale wavelet
coefficients and in the final scaling function coefficienthjat tend to have small variance anyway.
In some practical situations the assumption of independgntriables is not tenable. Such a
situation is beyond the scope of the present paper. Howesegan envisage prior or estimated
information on the covariance structure can be fed into teutation of the coefficients’ variance
along the lines of methods used for regular wavelet shrialsagh as Kovac and Silverman (2000).

3. Lifting for graphs

We introduce a lifting scheme that essentially providesna kif ‘wavelet transform on a network’.
Here we mean a ‘network’ to be a ‘function on a graph’. We cdesobur graphs to have arisen
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in one of two ways. One way is that the graph is supplied to eslgfined — for example a
transportation network or communications network. Thepttay is that data is supplied in a form
that can be converted into a network. For example, irreutgraced data i -dimensional space
on which a graph can be induced by calculating interpoirtadises and constructing, say, a MST.

3.1. Minimal spanning trees and other tree-based approaches

For data sets in 2D, approaches based on Voronoi cells ino8ettare attractive, but in higher
dimensions they become both computationally infeasibte @hilosophically inappropriate. The
number of Voronoi neighbours of each point will typically laege and the computations will be-
come burdensome.

Here, we consider an alternative lifting approach basedesst In principle, any tree can be
used as the basis of our scheme. In the casE-@fimensional data, useful trees are those that
reflect the neighbourhood structure of the points. If thgiogl data sites; lie in a K-dimensional
Euclidean space, a natural approach is to use MSTs, seergand{vski and Marriott (1995), which
are easily computed. Other types of tree might be usefulddiqular applications, and these would
be a possible topic for future work.

Some data sets naturally live on a tree rather than in somkdEan space. For example, the
data collection transects for the krill data depicted inuf@yl constitute a tree. More generally, we
can extend our “lifting on a tree” to more general graphs ag &s there is a suitable neighbourhood
structure. For example, in protein modelling, a tree cowdlbfined by the chemical bonds in a
large molecule. In this case, wherever it is necessary &riahne distances between points, it may
be appropriate to use distances in the original tree or graph

For functions on a graph our methods provide a kind of ‘waviedsform on a network’. By
restricting the analysis to a narrow range of scales our ouetlogy provides a kind of ‘coarse
Fourier transform’ of a network function (similar to a siagécale level of wavelet coefficients
acting as a bandpass filter). See Smola and Kondor (2003) elkéhEet al. (2004) for other work
on regularization of functions on graphs.

3.2. General aspects of tree-based lifting
The first step in the lifting scheme as set out in Section 2 Stvapecify the initial scaling functions
oni and to find their integrals. In the tree context, we define tadirsg functiong,,; to be 1 at the
node: and zero at all other nodes of the tree. At each stage of oeepspwe consider the scaling
functions and wavelets as being defined on the original nod&sdefine a set of weights; and
then define the ‘integral’ of any function having valfieat nodei as the weighted su, w; f(i).
In order to relate the weights to the tree on which we are vmgrkive definaw; to be the sum of the
lengths of the edges from the nodw its immediate neighbours. We arbitrarily use the sum ef th
lengths but the average of the lengths is another posgitiiktt we have used.

At each stage, we calculate the wavelet coefficient corresponding to thaen with the small-
est current value of,.;. Letting J be the set of current neighboursiofve have to define a suitable
set of weightse. We may either let/ be the immediate neighbours within the tree, or we may
include second- or even higher-order neighbours in thd set

Once the sef is defined, we need to define the prediction weight vectéior reasons explained
below, we mostly usénverse distance prediction weightsettinga,; = 05;1, whered;; is the
distance from point to pointj, andc is chosen so the weights sumitoln the extreme case where
J contains only one indeyk, the value at nodg¢ is used as the predictor at node
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Alternatively, in some circumstances, e.g. the krill datee nodes do possebsna fideEu-
clidean coordinates. In which case the tree can be used ttedbg neighbours but the coordinates
are used by least squares to form prediction weights. Tondisish between these two variants we
refer to them either as “tree with inverse distances weightstree with least squares coordinate
weights”. As an example of these two algorithms in actiongare 2.

Having defined the weight vecter we can update the integrals using equation (12), and calcu-
late the update weightg using the equation (15).

The final step is to update the neighbourhood structure. V&l absume that as a poinis
eliminated from consideration, the spanning tree is matlifeeally, only changing the linkage
structure between points previously linked directlyi tdf the pointi to be removed has immediate
neighboursjy, ..., jn, say, then we replace the links betweeand thej, by the links of the
minimum spanning tree of the points indexed f3y. .., j.». This procedure maintains the tree
structure of the pattern of links between points under ecurcensideration.

How many orders of neighbours should be used in the predigtéat of the lifting scheme?
“Mixed scale” points cause minor practical problems for m@thod based on Voronoi tessellations,
mostly near the boundaries. They are the source of the loddham Delaunay triangles that we
discuss, with some solutions to the resulting problemseictisn 4.3.

On average, points in a tree have fewer neighbours than fhmsea Voronoi tessellation. For
example, compare the Voronoi mosaic for the krill data inulrég2 (right) in Jansen et al. (2008)
with the ship track in Figure 2 (bottom left). This can be madecise: there arex — 1) edgesin a
tree constructed on points so the average number of neighbours for a point ineadiE1 — 1/n)
irrespective of dimension or distribution of the points,tbe method of construction of the tree.
For Voronoi tessellations the average number of neighhisurigher, nearer 6 in 2D for moderate
numbers of points, see Penrose (1996) and Penrose and Y@KkigB). In a tree, therefore, if only
immediate neighbours are considered in the set of neigsbiptinere is less opportunity for “mixed
scales” to occur. Alternatively, we may wish to include reglorder neighbours id, in order to
obtain better predictions. If one used higher-order neiging, one could either use neighbours up
to a given order, or one could increase the order of the neigtsbuntil the size of/ reached a
certain size.

Finally, our algorithm is not just restricted to trees. Tlang steps can be followed for any
general graph where distances and integrals can be sedsiiimgd. For example, with the UK rail
network, see section 7.2 in Jansen et al. (2008).

3.3. Why use inverse-distance prediction weights?
We now explore a correspondence between inverse distaedécfion weights and local linear
prediction. Suppose we are working on a tree, that we araqtireglthe value at point, and that
J = {j1,j2,...,4-} for somer > 2. Also, the tree is defined only by its linkage structure ared th
lengthsy;; of its edges. We consider a particular Euclidean embeddittgedree near the poirit
Definer unit vectorsu; in (r — 1)-space to be as far from one another on the unit sphere,
so that the end points of the; form a line segment, equilateral triangle, regular tetdabe, or
higher-dimensional regular simplex, in all cases centtétleorigin. We then hav®_,_ ; u; = 0.
Now place vertex at the origin, and place vertgxatd;;u; for j € J. In the case where there are
two neighbours, this is placéson a straight line between its two neighbours. More generilis
corresponds to arranging the edges around véiteke as far as possible in different directions.
Given valueg; at vertex;j for eachj in J, define the linear functiof(t) = a’t +bin (r — 1)-
space to be the interpolant of the valgesat the points);;u;; the graph of this function will be the
unique hyperplane through thepoints(d;;u;, y;) in r-space. Defing* to be the value obtained
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by inverse-distance weighting the valugs We now have, settingsuch that Zj 5;1 =1,

y* o= cZéi;lyj:cZ(Si_le(éijuj)

jeJ jeJ
= cY 0 (00" +b) =cd > u;+b=0b=L(0).
JjeJ JjeJ

It follows that, with this particular embedding of the treeBuclidean space, the linear interpolant
at the vertex to the valueg; at the verticeg is the inverse-distance weighted avergge

4. Lifting based on Voronoi polygons

In this section we consider lifting for spatial irregulartadased around Voronoi polygons and
Delaunay triangulations. The basic idea is to construckaah stage, a triangulation of the data
sites. The neighbours of any site are then the sites joindthtssite by edges within the triangula-

tion. Once a detail coefficient corresponding to a particsile has been found, the triangulation is
appropriately modified to remove that site.

4.1. Voronoi polygons, Delaunay triangulations and Dirichlet tessellations

Consider a set of sites in the plane. Kebe a suitable region in the plane containing all the sites
under consideration. The regiéhmay, for example, be the whole plane, or a suitable rectangle
the convex hull of the sites. Comments about the preciseetodf) will be made later. Th&oronoi

cell of any particular site is the set of points §hnearer to that site than to any other. Because
the boundaries of each cell are all perpendicular biseablises joining two sites, the Voronoi
cells are polygons, and thairichlet tessellations the partition of the into these polygons. See
Figure 2 of Jansen et al. (2008) for an example. Two siteseighhbours if their Voronoi cells have

a boundary in common, and the joins of all pairs of neighbéomss theDelaunay triangulation
There are algorithms for finding the Delaunay triangulatiothe first place, and for updating the
triangulation when a site is removed. For further detaitédrimation see Okabe et al. (1992); for
more information on these methods in statistics see Hemneaml. (1995) or Allard and Fraley
(2997) for example.

At each lifting stage, the neighbouysof a sitei under consideration are the neighbours of
within the current Delaunay triangulation, and the valugbh@se neighbours are used in the predict
and update steps. More sophisticated methods could be badedher order neighbours.

The paradigm set out in Section 2.3 requires two more ingrddj the integrals of the initial
scaling functions,,;, and a method of specifying the prediction weiglitat each stage. Provided
Q is a finite region, a natural definition of the initial scalifumction,, is the indicator function of
the Voronoi cell of the site;, and so the integral of the scaling function is the area aftoronoi
cell. We consider two main methods of prediction, thetural neighboumethod as proposed
by Sibson (1981), and local least squares.

4.2. Natural neighbour interpolation

If site ¢ is removed and the Dirichlet tessellation recomputed, thiboi cell of that site will be
divided among its neighbours. Assume the redibis finite. Let A; be the cell corresponding to
sites and letA4;; be the part of the cell made up of points whose next nearestdter:, is the site
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J. If site 7 is removed, them;; will form part of the new cell of sitg. If j is not a neighbour of
thenA;; will be empty.

Lifting using natural neighbour interpolation works byts®y a; = | A;;|/|A;| for each neigh-
bourj of i, where| - | denotes area. Provided the call does not intersect the boundarysef the
prediction weights thus obtained through natural neighlo@erpolation will predict a constant or
linear function perfectly, and have other attractive ragty, continuity and stability properties. A
corollary of the perfect prediction of linear functions it if a function is linear, then its wavelet
coefficients will be zero except for possible boundary affelf the function is approximately linear
in the region of the site; and its neighbour$t; : j € J}, then the linear prediction based on the
neighbours will be quite good and so the wavelet coefficialithe small. Another good property
is that the scheme isiterpolating if the sitet; is very close to one of its neighbouss then the
prediction at site:; will be close to the value at sitg, and will tend to this value in the limit as site
t; coincides with site ;.

One disadvantage of the natural neighbour method is its atatipnal intensity, though the
method does remain linear in the number of sites.

4.3. Local least squares prediction

A computationally simpler approach to prediction uses ll¢east squares. A least squares plane
is fitted to the values at the sités for j in J, and used to interpolate at the stte This scheme
has the property that if the functighis linear over the sité; and its neighbours, then the wavelet
coefficientis zero. Therefore it shares some of the goodastigs of the natural neighbour method.

There are, however, some numerical and conceptual isstiesheilocal least squares method
which require careful attention. For example, unlike theure neighbour method, the local least
squares method is not interpolating. The residuals fronteths squares plane, through the values at
the sites with indiced will not, in general, be zero. Therefore, even if the sjtés very close to one
of its neighbours, the predicted value will not necessérdglose to the value at that neighbour, and
more distant neighbours will still have a relatively heawpact on the prediction. This is in contrast
with the natural neighbour method, where more distant ri@ghs are automatically downweighted
in the prediction, because they have small valueg4pf|. In the local least squares approach it
is desirable to avoid neighbour configurations with a migtof short and long edges, because
these give rise to relationships between sites that aregaary apart on the scale currently being
considered. Because distant neighbours will influence thedigtion, for a smooth function the
magnitude of a wavelet coefficient at a site will be affectgdh® distance to its furthest neighbour,
and so the method may have worse compression propertieshit@aratural neighbour approach.
Triangles which are far from equilateral are likely to ocogar the boundary, where two fairly
distant sites may still have Voronoi cells that touch onetla@g particularly if the boundary a2
is some distance from the data boundary. This can be seee nigtit hand plot of Figure 2 from
Jansen et al. (2008).

One way of dealing with this issue is to remove from the tridagon those narrow triangles
with two vertices on the boundary where the opposite anglbtisse. This corresponds to redefining
Q) to be the convex hull of the sites under current considerasio that sites will only be considered
to be neighbours if their Voronoi cells touch within the cervhull. A more relaxed policy could
allow obtuse triangles, but only up to 120 degrees, say. yreaant, the approach may need some
modification at the corners of the configuration, where theagch described may leave sites with
a single neighbour, and in this case it may be appropriate-tiotroduce narrow triangles.

A related matter is the treatment of sites lying some distdram the remainder of the configu-
ration, so that the angle subtended by all the site’s neigtsie quite small. In this case, prediction
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is more like extrapolation, and can be quite unstable. A gdddirly ad hoc, way of dealing with
this is to project both the sitg; and the set of neighbouig; : j € J} onto the first principal
component direction of the s¢t; : j € J}. This is equivalent to using a least squares fitting
plane constrained to have gradient in this direction. Egfigdn this case, the raw local linear least
squares weights may fall outside the rafi@€ ], though it will be only in rather pathological cases
that this will happen in the modified method. The natural hb@ur approach cannot suffer from
this instability because its weights are necessarilgi].

4.4. Conclusions and further comparisons

Whichever method is used, it is necessary to retrianguleteconfiguration each time a site is
removed. If the natural neighbour method is used, then thietidét tessellation within the region
Q will be needed for the next stage, though of course only thie neighbouring the sité,. will
have to be modified. It is conceivably possible to modifat each stage but there is not usually any
particular point in doing so. Overall, the natural neighbmethod is more stable and more elegant,
but at a considerable computational cost, which is usuaityvarranted.

5. Aspects of theory

Wavelet shrinkage is based on three properties of wavetgtrdpositions. The first is smoothness
of the wavelet basis, including numerical convergence efréfinement scheme. The second is
numerical stability and the third is sparsity of a waveleta@iaposition. In classical dyadical or
translation invariant transforms, the analyses of theetip®perties largely coincide and reduce to
the solution of the two-scale equatigriz) = > 7o v2hyp(2z — k). If for given scaling co-
efficientshy, the scaling functiorp(x) can be found by a numerically converging iteration, then
the framework of multiresolution analysis guaranteesistdiecompositions and reconstructions,
see for instance (Mallat, 1998, Chapter VII). Sparsity itedmined by the support af(x) and

by the linear approximation power of the scheme for smoaotitctions. The approximation power
depends on the maximum degreef polynomials that can be represented exactly by an expansi
xP =300 cwp(x — k), wherep + 1 is the number of dual vanishing moments of the wavelet
transform. Numerical stability, on the other hand, is eaduy the concept of Riesz bases, encap-
sulated in the definition of a multiresolution analysis. Ae& basis is “almost” orthogonal in the
sense that the norm equivalence (known as Plancherel'sree\rd's equality) holds within finite
bounds. The norm equivalence is important in data procgsa#it guarantees control on the effect
of processing coefficients after inverse transform: smadlrations on wavelet coefficients result in
small effects on the data.

Both stability and sparsity thus depend on the solution efttvn-scale equation. In the settings
described in this paper, the two-scale equation itselfagestependent: both geometry and configu-
rations are differentin every step. As a consequence, tsis hactions are no longer dilations and
translations of a single father scaling function and theveogence analysis of the refinement pro-
cess, leading to the basis functions, becomes difficult,atlgpossible. One of the few exceptions
is the convergence analysis of the cubic polynomial preficefinement Daubechies et al. (2001),
based on a commutation principle for divided differencd® femainder of this section establishes
results on sparsity and stability that do not make use of¢hbrgy functionp(z).
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5.1. Sparsity
The dual number of vanishing moments is controlled by ptestistep in the lifting. The vanishing
moments condition leads to perfect representations ofnoohyals. Smooth functions that are well
approximated by polynomials, should also be well approxénin the scaling bases, such that their
wavelet coefficients are small and large coefficients cpord to singularities only.

The approximation power of a wavelet decomposition for sitn@anctions is formalised by the
concept of Lipschitz-regularity.

DEerINITION 1. A functionf(x) is Lipschitze in a pointz, if and only if there exists a polyno-
mial p., () of degree = [v] —1 and afinite numbef such that f (2) —p., (z)| < C-lx—xzo|" .
A function is uniformly Lipschitz-on an intervall is it is Lipschitz# in all pointsz € I with con-
stantC independent from:.

It is well known Jaffard (1991) and straightforward to prakat the coefficients of a uniformly
Lipschitz+ function f in an orthogonal or bi-orthogonal equidistant wavelet aegosition with
Ly-normalised basis functions satisfy; | < C277(*+1/2)_ This results follows easily from the
expression;, ;. = (17 1, f) with ¢%, the Lo-normalised dual wavelet function at scg/docationk
and(, -) the usualL, inner product. Extension to 2D is straightforward. Unlesexplicit rescaling
takes place, lifting works with unnormalised basis funetioThat is, applied to 1D regularly spaced
data, the primal wavelet basis functions would/de’ = — k) and the corresponding duals are then
20p*(27z — k), leading to coefficients satisfyingv; | < C277%. On irregular data points, in
absence of strong convergence results, similar bounds wvelstaoefficients can be established,
assuming a weak statement of convergence. The followingtrissstated for lifting with linear
least squares prediction or natural neighbour interpadgtrediction. Similar results hold for other
schemes.

PROPOSITIONL. Letx; = z(t;) ben observations from a Lipschitzfunctionz : R? — R.
Consider lifting with linear least squares prediction ortaeal neighbour interpolating prediction.
Let C,. the (n — r) x n matrix that maps the observed data vector onto the scaliredficeents
cri, after r lifting steps. LetD be the matrix that maps the observed data vector onto thewect
of wavelet coefficients. Assume thal|C,| - is bounded for all- and forn — oco. Then, for
some constan€, independent from andr, |d;,| < ChY, with v* = min(v,2) and where
hi, = max{||t, — t4|l,p,q € I;,} withZ,, = {p € {1,...,n},D;,, # 0}. Thatis, the scale
h, of coefficient;,. is the maximum distance between poiytsvith a nonzero contribution in the
calculation ofd;,..

Proof. We assume here that < v < 2. The proof can be repeated with slight modifications
if v < 1lorv > 2. Definez(t) = z(t;.) + Va(t;.)' (t — t;.). It can be verified that(t) =
Z(t) —x(t) satisfiege(t)| < C||t—t;,||”. Both local least squares prediction and natural neighbour
interpolation schemes have the linear reproducing prgpérts is the local coordinate property
Sibson (1980) in the case of natural interpolation). As asegaence, when the wavelet transform
is applied taz(t), then all intermediate detail coefficients are zero, ﬁg.; 0, thereby annihilating
a priori all update step effects. Thus, the scaling coefficients(of satisfy¢,; = z;. The wavelet
analysis is said to have two dual vanishing moments.

Denote byd; the wavelet coefficients af(t), then|d;, | = |d;, +d5 | = |d5 | < [|Cr_1]loo -
lla™[[1hy I (|Cy ||OO is bounded, thefiC;_1]| oo - ||aT||1 can be bounded by a constant

Remark. The assumption thaC, || is bounded, can be seen as a partial stability condition.
It depends on the choice of update steps and on the homogeh#ie data points. Scattered data
that are distributed in an inhomogeneous way, may cause tefficients. A formal definition of
homogeneity is given in Section 5.2.



16 Stefan Wager

Remark. Checking that|C, ||« is bounded, may proceed through #héjoint lifting transform
Jansen (2007). The adjoint transform for lifting in Equat{d) is an update-first scheme and reads
as

Update z/ := 2/ +az; andthen Predict z; :=z; — bz’

The adjoint transform switches the roles of primal and daaibfunctions, by using the prediction
coefficients in an update step and vice-versa. The inveljsénattansform starting frond; . = 0
andc,, = 0, except for one indek = k reveals thé:-th row of C,..

Based on this result for smooth functions, one can cons&rggiace of “nearly” smooth func-
tions, in a similar way as Besov or Triebel spaces. The snmasthspace is defined in terms of the
second generation wavelet coefficients. Large coeffici@rgsllowed, if they do not dominate the
global decay. That is, we define the second generation Bespesce norm as

1F@®)lley, = > b i Pl |17, - (19)
r=1

This can further be extended to a three-parameter ngfitt)(|,» , with p # ¢. The parametep
measures the sparsity within scale while the paramatentroles the decay rate across scales. This
definition of Besov sequence spaces corresponds to a dsti@t from a continuous time-scale
analysis Donoho et al. (1998). As the second generationleiavansform is no longer a discretisa-
tion of a continuous wavelet transform, there are seversdipte ways for further extension of the
definition of Besov spaces to the case wheté q.

5.2. Stability

For proper processing, the set of wavelet functions shooitdtitute a Riesz basis or stable basis
in the infinitely dimensional spack,(R?). A Riesz basis is a basis that is almost orthogonal, in
the sense that the angles between any two vectors spannesjdintdsubsets of the set of basis
functions are bounded from below. The formal definition &s thllowing.

DEFINITION 2. Let{¢;,j = 1,...,00} be a Schauder basis of the Hilbert spa&ethen this
is a Riesz basis if

(a) Itis almost normalised, that is, there are positive danssa and A so thata < ||¢;]|3, <
A, V5 eN.

(b) Itis unconditional, that is, there are positive congtanandC, so thatiff = 327, w;¢;,
thenc||w||3 < [[f[}3, < Cllw]3.

The Riesz basis condition is hard to check in the contextre§ularly spaced data, since it depends
on the subdivision of the irregular locations up to infinjtéhe grids.

A necessary condition is that the multiscale grid is notteatly inhomogeneous. Homogeneity
in 2D is defined by the minimum angle in a triangulation. Bgt be the minumum angle in the
triangulation at scalg, then we assume that, for gll= 1,...,n and forn — oo, 6a; > 034, for
some positive numbery .

A necessary, but far from sufficient (Jansen and Oonincxp28@ges 88-89) condition for
Riesz-stability is that the one level transforms (4) ardarnily bounded and boundedly invertible.
We have the following result.

PROPOSITION2. Given a homogeneity constadj{, the one level transforms of a lifting trans-
form with local least squares prediction, inverse distapoediction or natural neighbour interpo-
lation and with minimum norm update, are uniformly bounded boundedly invertible ip.
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Proof. Thanks to the specific structure of lifting and its immediateertibility property, it is suf-
ficient that prediction and update vectarsindb are uniformly bounded. The number of nonzero
entries in these vectors is bounded%y Any norm of the vectors is bounded if all nonzero entries
are bounded. The prediction coefficienttie between 0 and 1 for the inverse distance prediction
and for the natural neighbour prediction. It can be elatsat#ihat they are bounded for the least
squares prediction, thanks to the lower bound an

For the update coefficients, we have the following result.

LEMMA 1. Ifall 0 < ajy <1 and if i, is the value of that minimized,, then the update
coefficientd’, as defined in (15) satisfy < b7 < 1/2. Similar bounds exist it are bounded by
values different from 0 and 1.

Proof. b = Lni, I i/ Zkej 1k with I,y ; = I; + ajlyi, . Clearly,b}' > 0, and,

HbTH — 7. . maxge.g, Ir—1k . maneJr(Iv'j/ITir + a}')
o Y hen Tk 2kes, Inj/Iri, + aj)?
Note that linear reproduction (two vanishing moments) iegpthat)
haVe(l = 1 and thU§7 = m
||bT|\C,o takes the shape gf(u) = =147
that f(u) < 1/2.

jed. a}' = 1. Forn, =1,we
<1/2. Forn, > 1, settingu = maxge s, (Ir;/Iri, + aj),
foru > 1 and withR > 1. Itis straightforward to verify

5.3. Compression

Wavelet shrinkage relies on the ability of the underlyingresentation to compress functions into
sparse representations. Section 5 of Jansen et al. (20BB)tesimulations that show our lifting
methods (especially Voronoi) possess compression asilidughly in line with regular wavelets.

6. Bayesian shrinkage

Now consider the following model of observations subjechéise: Z; = f(t;) + ¢;, where the
noisee; are independen¥ (0, 0?) random variables. The grid locations are irregular but icered
fixed for the purposes of the analysis. Wavelet based smugp#igorithms estimatg by taking
an appropriate wavelet transform, modifying the coeffitdén order to reduce noise, and finally
inverse transforming the updated coefficients. Becauskeohotion that the wavelet transform of
the unknown function is likely to be in some sense ‘econofhisame form of thresholding or
shrinkage procedure is used to process the observed ceefficiSoft and hard thresholding are
the best known thresholding methods, but more sophisticsitenking may follow (among others)
from a Bayesian analysis of the noisy coefficients.

6.1. Prior model and posterior density

The essence of the thresholding problem is the followingpp®se we have a parameteand an
observationZ ~ N(6,1). In the wavelet smoothing casé,would be an individual coefficient
rescaled so that the empirical coefficient had unit variaf@dlowing papers such as, Clyde et al.
(1998), Abramovich et al. (1998) and Johnstone and Silvar(@804) the assumption thétis a
coefficient from an economical expansion is modelled bygiaimixture prior ford of the form

0~ (1—m)dg + 7y (20)
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wherey is a symmetric density.
Johnstone and Silverman (2004) explore the advantagesraf ateavy-tailed density foy,
such as the density }

(u) = (2m) 72 {1~ Jul@(Jul) /¢ (u)} (21)
where®(u) is the upper tail probability of the standard normal disttion. This density has tails
that decay as 2, the same weight as those of the Cauchy distribution. Ferégson we refer to
the density (21) as thguasi-Cauchylensity.

Suppose) ~ (1 — m)dy + 7y andZ ~ N(6,1). Johnstone and Silverman (2004) set out
details of the calculation of the posterior densftf|Z) and also of the marginal densif{Z) =

[ = 7)d0 (u) + my(u) b2 — w)du.

6.2. Bayesian decision rule: posterior median

Once we have the expression for the posterior derfsity, we have various choices of point esti-
mates off). The posterior mean is popular, but it lacks the threshglgiroperty. UnlessZz = 0
the estimate will be non-zero, which does not accord withnibiggon that the coefficient may well
be zero. An alternative is the posterior medign), satisfyingFy| ;. (0) = 0.5. With the quasi-

Cauchy distribution fory, this leads to a tractable expressionfor) in terms of the standard normal
distribution and its inverse. See Johnstone and Silver@d5a) for details and implementation.

The posterior median rule is a strict thresholding rulehwiite property that, for any given,
there is a threshold(r) such tha(z) = 0 if and only if |z| < (). An alternative to the use
of the full posterior median is to use hard or soft threshajdwith thresholdr (7). The smaller
the probabilityr the larger the threshold(r), and the choice of prior probability thatd # 0
corresponds to the choice of threshold. It is this choicewsaconsider next.

6.3. Estimating the parameters (MLE)

Suppose that we have sequedcef coefficients and a sequence of observatidns- N(6;,1),
fori =1,2,...,n. Suppose, initially, that thé; have independent prior distributions (20) all with
the same value of, and that the observatioris are themselves independent conditional on the
;. Let g be the convolution ofy with the standard normal density, so that the marginal deo$i
theZ; is (1 — m)¢(z) + mg(z). Johnstone and Silverman (2004, 2005b) explore attractagifes

of a marginal maximum likelihood (ML) approach to the choider, chosen to maximize the log
likelihood/(7) = 3", log{(1 — 7)¢(2;) + mg(2;)}. This procedure is an empirical Bayes approach.
First of all, the whole data set is used to estimate the paeameThe estimated value is then used as
a prior probability in the model (20) and the inference eatdut for each coefficient separately. For
theoretical and practical reasons, the maximisation iallysoarried out over a range afbounded
below at a point corresponding to the threshold taking ting/ersal threshold’ valug/2 log n.

In the case of a classical orthogonal wavelet estimate, defficients are arranged into lev-
els, and it is appropriate for the probabilityto be constant within levels but to be allowed to
vary between levels. To this end, each level of the transferireated separately by the marginal
ML method, and an estimated parameteris obtained for each levgl Typically, the parameter
decreases as the resolution increases. At the levels porréimg to fine-scale effects, the prior
probabilityr; is small and an observed coefficient has to pass a high tHeeishorder not to yield
an estimate of zero. At the coarser-scale levels, a smhliestold will usually be appropriate.

In the lifting case, the division into ‘dyadic’ levels is nariger appropriate, and instead a number
of other possible approaches can be pursued. Overall, ibeaassumed that the prior used for
coefficientd; has probabilityr; of being nonzero. The criterion for choosing thgis still the
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maximization of the marginal log likelihoodn, ..., m,) = >, log{(1 —m;)p(2:) + mig(z:)}, but
subject to appropriate constraints on the parameterSome possibilities are as follows.

Parametric dependenceThe coefficients are constrained to belong to a particwadonensional
parametric family. For example, for lifting one might camsh 7; to be proportional to the
scalen;, or perhaps to some powef . This accords with the notion that there are singularities
of some sort in the underlying function. If the singulast@&re pointsg; is proportional to
the probability of the wavelet encountering one of thesgudarities. For line singularities a
more appropriate model for this probabilitydé/Q, and so on for spaces of singularities of
different fractal dimension.

Artificial levels This approach is an adaptation of the dyadic structure ofstandard discrete
wavelet transform. One splits up the coefficients into Igwelsome arbitrary way, and one
possibility is simply to impose an artificial dyadic splitjtivthe highest level containing
the half of the coefficients with finest scale, and subsedygnter levels successively one-
guarter, one-eighth, and so on of the total number of coeffisiin the order defined by the
lifting scheme. An alternative is to group the coefficiematsmng account of the values of their
pseudo-scales. For exampleif is the median scale of the coefficients, then levels could
be defined with coefficients with scales in rang&%y,, 27~y for j > 1, with the highest
level consisting of all those coefficients with scales uprtd mcludingay.

Parametric dependence within artificial levels The simplest approach using artificial levels is to
constrainr; to be constant within levels. An alternative is to allow agraetric dependence,
for exampler; proportional t0a}/2, with a constant of proportionality that is allowed to
depend on the level. Finally, whatever method is chosenait be appropriate to smooth or
interpolate the estimaterd.

Monotone dependenceConceptually the simplest constraint on thewould be to require only
thatn; increases as the individual scaleincreases. Because of the convexity properties of
the log likelihood function, estimation af; subject to this constraint can be carried out using
an iteratively reweighted least squares isotone regnesdgmrithm. Part of the standard the-
ory of least squares isotone regression is a convexity aegushowing that the least squares
isotone regression function is piecewise constant. Thesagument shows that the result-
ing estimatedr; are also piecewise constant functions of the scalegnd so this method
indirectly splits the coefficients up into levels, with ctarst r; within each level. Further
details are available from Johnstone and Silverman (200%#x% Figure 2 (Bottom right) for
an example of using such an algorithm.

The calculations for maximizing the log likelihood are éaskt out. Define

Bw) = {g(w) — p(w)}/(w) = w2(e?*/2 — 1) — 1.

Then, by simple calculus, we ha®é/0m; = 3(z;){1+mB(z:)} !, which is a decreasing function
of ;. Obviously, we always constrain < 1. In addition, to avoid excessively high thresholds, and
in line with the theory developed in Johnstone and Silverii2894), we impose a lower limit on
m; corresponding approximately to a threshold value equdldaihiversal thresholg'2 Tog nn. For
simplicity, we choose the lower limit;, to satisfy the conditiolP(6; = 0|z; = v/2logn) = 1/2,
which is equivalent to setting;,! =1+ (n — 1)/(2logn).

Details of the algorithms used to make the constrained Mliaehof ther; for the parametric
and monotone dependence cases are set out in Johnstondvanah&i (2005a).
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6.4. Parametric dependence within artificial levels

Details of the parametric dependence algorithm can be faouddhnstone and Silverman (2005a).

We consider the modifications necessary to adapt the proegaltihe artificial levels case for lifting.
General setup: Suppose we have datafor i = 1,...,n, and consider the basic modgl =

¢;¢ wherec; are known constants. In order to enforce the constraigts. m; < 1 we refine this to

m;:(¢) = mediaq 7o, ¢;C, 1}. (22)

Letting g be the convolution of, with ¢, the marginal log likelihood function is then given by

0(¢) = Z_ log[{1 — mi(¢)}b(zi) + mi(¢)g(z:)]- (23)

By the definition ofr; there is no loss of generality in consideriggnly over the interval(;,, ¢ril,
say, where;, = m,(maxc;)~t, and¢y; = (mine;)~ L. If ¢ < (, then allx; will be 7, and if
¢ > (i then allm; will be 1, regardless of how far outside the intergdies.

For artifical levels: All of the artificial levels cases reduce to the same generahf Within
a particular levelZ, we have (22), where; are known constants such as 1@}/2, and( is a
parameter to be estimated. The likelihodd, for the level£ is now (23) but where the sum is
now overi € L. In the straightforward artificial levels case, all the= 1, and/, is a concave
function of ¢ in [m;,, 1]. We havel’.(¢) = >, B(zi)/{1 + (B(z:)}, a decreasing function af
By checking the signs of.(¢) at the ends of the range it can be discovered whethg}) has its
maximum at one end or the other; if not, a binary search oneeedsing functiod. (¢) will find
the ML estimate. If the; are not all the same, then we apply the ‘parametric depemdapproach
within each artificial level as described in Johnstone ahgB8nan (2005a).

7. Examples and comparisons

7.1. Multiscale lifting for krill data

Background.Goss and Everson (1996) report that as a by-product of a fisk sissessment study
an opportunity was taken to estimate the biomass of Antakeifl on the South Georgia shelf by
the British Antarctic Survey (BAS). Goss and Everson (1998)e that krill biomass determination
is important because they are basic part of the “food webfll e consumed by large numbers
of birds, mammals and fish but it is also increasingly beingésted for both human and animal
consumption. As well as potential over-fishing krill stoeke also under pressure from a variety of
other sources such as sea temperature rise or increasedrd¥fgg®n of sea water.

Since the study was a by-product of another study the saqpliints took little account of
the expected distribution of krill. Indeed, stations weetested for the fish abundance study and
the shortest overall track was selected that visited alhefdampling stations. Figure 1 shows a
selection from the transects and the sampled krill valuasgait. Figure 2 shows a different portion
of the krill data subjected to regression analyses usitigdifwith trees using both least squares
coordinate and inverse distance weights. Figure 3 showsadsts obtained using Voronoi lifting.

Fitting. For all of the regression estimates a small proportion ofllsnemative values were
replaced by zero. In all estimates a lot of the original zeatadsalues have been replaced by
very small intensity values. In Figure 2 it is interestingnote the differences between the two
estimates around the [175km, 262km] location. The estirbated on the MST estimates some
“lumps” of intensity, whereas the one based on the ship& gatimates small intensities following
the ships path. There are at least two reasons for theseetiffes: (i) the ships track only uses
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Fig. 2. Analyses of selected portion of krill data set. Circle radius (not Bottom Left) encodes square
root of krill density estimate in gm~2: largest value is 14981gm~2. Top left: krill density supplied by
BAS. Top right: MST lifted estimate with least squares coordinate weights and eBayesThresh applied
to lifting coefficients at all scales. Bottom left: circles indicate krill sample locations, line indicates
tree determined by ship transect. Bottom right: ship-determined transect tree lifted estimate using
inverse distance weights and eBayesThresh with monotone dependence of ;.
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neighbours from the previous and next sample in the track@dsethe MST algorithm will use

nearest neighbours irrespective of the track; (ii) thelttmae that the ship takes to cover points
in the region (within a 25kmbox centred on [175, 262]) is approximately 12 hours and ke s

crosses near to the centre about 5 times and the actualdmsiity over this time may change.

With regards to the second point if the density field of a sysi®subject to rapid change then
maybe the estimate that follows the ship’s track would beemweliable. Otherwise, if the field is
slowly changing then estimates that take more account afrgedical spread, like the MST, or
even Voronoi might be more appropriate.

Model Verification.Let us take the MST lifted using least squares coordinatghtgianalysis
further. The estimate from this procedure is shown in therigipt of Figure 2. We examined the
residuals from the fit and discovered that the residuals @pproximately normally distributed
(both by inspecting a histogram and through a KolmogorowrSow testp-value of 0.18) with a
standard deviation of about 11.4. The variance of the redsdappears remarkably constant over
the plane. All of this indicates a very good fit to model (1).

ComparisonsQur results directly contast those generatetblegsand the MATLAB ‘triogram’
function. Both of these methods did not deal with the ‘clungsis’ of the krill data at all well. Both
methods smoothed out some features and missed others telpghence, their residuals also did
not look satisfactory either. These results concur withginulations in section 7.2 below.

Physical InterpretationThe likelihood maximization described in Section 6.3 resinl piece-
wise constant thresholds (over scale), which are derivam the piecewise constant weight esti-
matesr; arising from the monotone dependence constraints. Thsttblds are plotted in Figure 5
of Jansen et al. (2008). The piecewise constant functiopéiditly divide the scale space into a
number ofdata-defined resolution leveléFor those familiar with regular wavelet methods, this is
an example of level-dependent thresholding but where g@uton levels are not fixed dyadic but
arise from, and depend on, the data). The smallest threshhld is approximately.6 x 10~ for
the coarsest 345 coefficients. This means wavelet coefficierscale ranges from 0.8km and up
are essentially not thresholded. Another way of interpgethis, familiar to wavelet shrinkage re-
searchers, is to say that 0.8km is the “primary resolutiiirier scales than this get monotonically
higher thresholds in band8.71, 0.8), [0.58,0.71), [0.09,0.58) and less than 0.09. The thresholds
statistically indicate that these is little or no variatiarthe ‘true’ intensity pattern at less than 100m
and there is reduced variation at less than 600m. This irdtiom could be then cross-referenced
with individual clusters of wavelet coefficients to providstimated information about particular
cluster groupings and locations. In summary, we obtainrmégion in terms of the estimataut
alsoinformation on the variation of the ‘true’ intensity via ttferesholds.

Finally, the krill data distribution does not look partiadly Gaussian. Figure 3 shows two more
estimates using Voronoi based lifting with and without thg transformation. In future the Haar-
Fisz transform, see Fryzlewicz and Nason (2004) or Jang#6janight be used.

Section 7.2 in Jansen et al. (2008) describes another eranopterned with shrinkage of delays
on part of the UK rail network via tree-based lifting.

7.2. Comparisons

7.2.1. Comparing our lifting methods with themselves bhoéss

We carried out a large simulation study with our new methaads@mpared them tooess using

R (see Cleveland and Devlin (1988) for more informationl@mess, see R Development Core
Team (2008) for R). We evaluated these methods on 2D anaarftleeBlocks BumpsHeavisine
andDopplertest functions introduced by Donoho and Johnstone (199 tfzen piecewise linear
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Fig. 3. Krill density estimates computed using Voronoi least-squares lifting with regular
eBayesThresh. Left: estimate on raw data; Right: estimate on log transformed data.

Fig. 4. 2D analogues of Donoho and Johnstone test functions. From left to right: Doppler, Heavisine,
Blocks, Bumps and mfc(not an analogue).

functionnf c. Pictures of the test functions appear in Figure 4. Full rahtical definitions of
these functions along with comprehensive simulation tesydpear in Nason et al. (2004).

Every simulation run was based on estimating one of the testtions on a jittered6 x 16
grid and adding iid Gaussian noise. Varying amounts ofrjfitkstributed as Unif-», ] for n =
0.1,0.01,0.001, varying signal-to-noise ratios. Sensitivity to “primamsolution” (the number of
points that get removed in the lifting transform) was alsplesed. We also explored the perfor-
mance of our different ways of carrying out our MLE as desdiin Section 6.3.

Table 1 shows a selection of results from Nason et al. (20Dd¢.can see that for the very simple
piecewise linear functiomfc the loess procedure does very well, but the Voronoi liftimgot far
behind. For all other signals the lifting procedures dodyetr much better. However, note that

Table 1. Median (MAD) of 100 simulated sums of
squares error values for | oess, Tree based lifting
(pi ct r ee) using coordinate information, and Voronoi
based lifting (I i ftvorLS). Jitter n = 0.01, SNR =
5,ng = 162, monotone dependence EBayesThresh,
(x1000).
Signal Loess Tree \oronoi
mfc 18 (16) 75 (46) 26 4)
Doppler| 130 (5.9) 35 (26) 8 (1.0
Heavisine| 530 (49) 410 (200) 72 (20)
Blocks | 2300 (53) 190 (91) 160 (37)
Bumps| 3000 (160) 770 (500) 210 (32)
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Table 2. Mean averaged squared errors from 50 simulations for
denoising of mfa and mfb by triogram and Voronoi lifting method.

Functionmfa Functionmfb
Method ‘ 15dB 18dB 15dB 18dB
Triograms | 20.9 (0.04) 20.0(0.04) 19.9 (0.04) 19.3(0.04)
Voronoi | 16.4 (0.02) 11.1 (0.021 14.3 (0.03) 9.7 (0.02)

the performance for the tree based lifting is highly vamiefdarge MAD values) this is because of
the fewer neighbours it uses in constructing neighboure. &ttellent performance of the Voronoi
based lifting is seen throughout all simulations. Prima&sofution does not appear to dramatically
influence performance but small differences appear, esibhewgiith the tree-based lifting. Likewise,
amongst all of the methods for carrying out MLE (all coeffitig parametric dependence, artificial
levels, parametric dependence within artificial levelsl aronotone dependence) there seems to be
no clear winner. Each method seemed to do better than thesatheoccasion. If forced to select
one method then monotone dependence usually seemed toldo wel

7.2.2. Comparing Voronoi lifting with Triograms
Hansen et al. (1998) introduced the triogram method fortion@stimation using piecewise linear,
bivariate splines based on an adaptively constructedguiation (see also Koenker and Mizera
(2004) for a smoothing spline approach to triograms basetherDelaunay triangulation). We
compare our Voronoi lifting method to Triograms using theant r eg package.

We used two test functions for this simulation study. Fiedirte the generic function:

gf(z,y, horizon) = (2z + y)I {horizon(z, y) < 0} + (10 — x)I {horizon(x,y) > 0},  (24)
wherel is the usual indicator function and then define horizons
horizona(z,y) = 3z — y — 1 andhorizong (z,y) = (x — 1/2)* + (y — 1/2)* — 1/16, (25)

and then our test functions anefa(x,y) = gf(x, y, horizona (z,y)) andmfb(z,y) by replacing
horizon 4 by horizong.

For each simulation in this section we generated 1009) locations from a 2D uniform density
on|0,1] x [0,1]. We then generated noisy observations by adding Gaussisa wih two signal
to noise ratios (SNRs) of 18dB and 15dB. In each case we peed50 simulations. The results
are shown in Table 2 and indicate the superior performantgeoforonoi lifting methodor these
functions and SNR$-urther experiments show that for very low SNRs triogranthrods do better.

7.2.3. Comparing Voronoi lifting with thin-plate splinesdkriging.

Heaton and Silverman (2008) compared our Voronoi liftinghmdology, additionally equipped
with an imputation method with both thin-plate spline andyikrg methodology, and showed that
Voronoi lifting is competitive, see Section 8 for furthefonmation.

8. Conclusions and future possibilities

This article has described a variation on the lifting therfiiéting one coefficient at a time” and
specified a new multiscale methodology for non-parametgeassion in two or more dimensions.
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Three types of lifting methodology are developed: liftinghathe Dirichlet tessellation using co-
ordinate information in 2D, lifting with trees and graphsngscoordinate information and lifting
with graphs using inter-point distance information. Witlese algorithms “scale” naturally arises
as a continuous concept and various empirical Bayes metiadsbeen invented that make use of
the continuous scale knowledge in a consistent way. Sonoedtieal aspects have been discussed.
We have also demonstrated the utility of our techniques batthe krill data (where ships track
information can optionally be used) and simulated data.

A further innovation would be to choose from amongst diffetypes of predict and/or update
steps as each coefficient is generated. In generic liftilsggtknown as ‘adaptive lifting’, see Clay-
poole et al. (2003). For lifting one coefficient at a time ailaplifting has been described in 1D
by Nunes et al. (2006) who build on Jansen et al. (2001) angripteversions of this article by
permitting a choice of regression order (linear, quadraticubic) and/or number of neighbours
involved in prediction. Nunes et al. (2006) provide a fuiéfature review of adaptive lifting and a
comprehensive simulation study, which shows that 1D adafifting one coefficient at a time pro-
duces extremely good compression and nonparametric siggme®sults when compared tocfit
(Loader, 1997, 1999), thenoot h. spl i ne() functionin R, and the irregular wavelet shrinkage
algorithm by Kovac and Silverman (2000). Our methods canéeldped further to cope with
heteroscedastic variance using ideas similar to thoseopeapby Kovac and Silverman (2000) as
demonstrated in 1D by Nunes et al. (2006). The technique®wé&and Silverman (2000) could
also be used to cope with correlated errors: essentiallgt@mate of the correlation structure would
be fed into the variance estimation stage as described fiosat5.

As well as estimating true values from a noisy function (@itiregularly spaced or on a net-
work) on a given set of points one might also wish to estimlageftinction at a new set of points.
Heaton and Silverman (2008) describe a method that imphéesalue of the function at a set of
sites given information from another set of sites using thgd3ian lifting model that we present
above using the Gibbs sampler. They demonstrate their miethocessfully both with regular
wavelet shrinkage, and also on simulated and real data osingD Voronoi lifting. For both sim-
ulated and real data their results are competitve with batfing and thin-plate spline methods and
in one of the three cases for the rainfall data the lifting utapion method is significantly better.
More in-depth simulations and comparisons need to be pagdto thoroughly expore the utility of
these methods. Other questions along these lines remaim exdmple, how to deal with locations
that disappear when one is modelling data structures thrtong.

Another important possibility would be to more accuratelgdal the variance and correlation
between lifting coefficients, ideally in a computationadifficient way. Such a possibility could
be incorporated into the empirical Bayes paradigm, buteissaf computational efficiency would
have to be dealt with. This leads onto the possibility of defjrstochastic processes on the lifting
coefficients themselves, and additionally, defining a peder the locations;. For example,
one might envisage developing a similar kind of model to ligcstationary wavelet processes as
introduced by Nason et al. (2000) using our lifting techigjue
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