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Summary. For regularly spaced 1D data, wavelet shrinkage has proven to be a compelling
method for nonparametric function estimation. We create three new multiscale methods that
provide wavelet-like transforms for both data arising on graphs and for irregularly spaced spa-
tial data in more than 1D. The concept of scale still exists within these transforms but as a
continuous quantity rather than dyadic levels. Further, we adapt recent empirical Bayesian
shrinkage techniques to enable us to perform multiscale shrinkage for function estimation both
on graphs and for irregular spatial data. We demonstrate that our methods perform very well
when compared to several other methods for spatial regression for both real and simulated
data. Although our article concentrates on multiscale shrinkage (regression) we present our
new ‘wavelet transforms’ as generic tools intended to be the basis of methods that might benefit
from a multiscale representation of data either on graphs or for irregular spatial data.

Keywords: wavelets, wavelet shrinkage, lifting, graph, irregular data

1. Introduction

1.1. Background
Over the last decade a large variety of wavelet methods have been introduced to several different
areas of statistics such as curve estimation (regression, density estimation, intensity estimation,
survival function estimation), time series analysis, functional data analysis, and image warping.
See, for example, Vidakovic (1999), Silverman and Vassilicos (2000), Percival and Walden (2000),
Abramovich et al. (2000) for reviews. Nearly all work in the statistical area has been based on the
fast discrete wavelet transform (DWT) invented by Mallat (1989). The major exception being work
in statistical inverse problems, which has relied on Fourier transformation and Meyer wavelets, see
Johnstone et al. (2004) for a recent review.

Existing work in wavelet-based function estimation has typically made use of the following
model and assumptions. Letx(t) be some function that we are interested in for somet either on
R or some interval[a, b]. Supposeǫi is iid Gaussian with mean zero and constant varianceσ2. Let
ti = i/n. We observe

yi = xi + ǫi (1)

wherexi = x(ti), yi = y(ti) andi = 1, . . . , n. Key features of this model are that
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(a) the number of observations,n, is a power of two, sayn = 2J for someJ ∈ N. This restriction
is not too difficult to overcome even when using fast wavelet transforms.

(b) the data are observed on the regular gridti = i/n. This assumption enables direct use of
standard wavelet (and Fourier) discrete transforms. When data are irregularly distributed
various methods, such as binning or interpolation to a regular grid, have been proposed. For
example, in 1D, Antoniadis et al. (1997), Hall and Turlach (1997), Cai and Brown (1999),
Sardy et al. (1999), Kovac and Silverman (2000), Antoniadisand Fan (2001), Pensky and
Vidakovic (2001), Nason (2002), and Kohler (2003).
In 2D Herrick (2000) extended the interpolation method of Kovac and Silverman (2000) to
2D but found the resulting procedure too computationally intensive to be of any practical use.
Recently a new “second-generation” wavelet-like paradigmcalled “lifting” has been devel-
oped, which can handle multidimensional irregularly spaced data that commonly arise in
statistics. For a quick introduction to lifting see Sweldens (1996). Lifting is the mathematical
foundation of our work and it is described in more detail, with references, in Section 2.
Adaptions of lifting to curve estimation problems in 1D are discussed in Vanraes et al. (2002)
and Delouille et al. (2004). For lifting half-regular designs (tensor product of two 1D irregular
designs) see Delouille and von Sachs (2002). In 2D curve estimation with lifting has been
tackled by Delouille (2002) and Delouille et al. (2003): this work and the current article both
develop and build on Jansen et al. (2001).

(c) the error distribution is iid Gaussian with zero mean andconstant variance. Various authors
have weakened these assumptions. For example, see Johnstone and Silverman (1997) for
correlated noise; Neumann and von Sachs (1995) and Averkampand Houdré (2003) for non-
Gaussian noise.

The main advantages of using wavelets are their excellent theoretical properties, excellent empirical
performance both for smooth functions and also those with discontinuities or other inhomogeneities
(even when,a priori, it is not explicitly known whether the function is smooth ornot) and very fast
computational speed.

1.2. Our main contributions
The main contributions of our work can be summarized as follows. We introduce (i) a wavelet-
like transform for data on a graph; (ii) wavelet-like transforms for irregularly spaced data in two-
or higher-dimensional space; (iii) statistical methods for function estimation adapted to these new
wavelet-like transforms. Our proposed methods perform very well, they are rotationally invariant,
extremely fast and memory efficient, can provide credible intervals as well as ‘point estimates’
through empirical Bayes and can very easily be extended to use smoother basis functions. See
the end of this section for a discussion of the pros and cons ofour methods compared to other
techniques.

The multiscale concept is particularly powerful for data that arise on networks permitting, for
the first time, the description and quantification of structure within a graph at several scales and
locations simultaneously. From now we shall be solely concerned with Gaussian iid noise but
several of the techniques mentioned above for generalizingthe distributional assumptions could be
made to work efficiently with our technique.

A key concept in many spatial regression contexts, including ours, is that of neighbourhoods.
That is, given a point which other points are “close” and which are its neighbours? In 1D, with
the order relation onR, neighbourhoods can be more straightforwardly defined. Theclosest points
to a given point are smallest/largest point greater/less than the given point. In more than 1D there
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are many possible neighbourhood concepts that could be used. Some problems come with their
own neighbourhood structure. Where there is noa priori neighbourhood structure we use either
Voronoi polygons or minimal spanning trees (MSTs) to define neighbourhoods, which are utilized
by a lifting technique.

We also carefully analyze the variance structure of the lifted wavelet coefficients and develop
a novel Bayesian wavelet shrinkage technique, which works in the absence of formal scales (for
irregularly spaced data the dyadic scale concept is artificial).

1.3. Other methods for function estimation
As the previous section highlights one of our goals is to use our newly created lifting/wavelet trans-
forms for function estimation. For function estimation there exists an enormous range of alternatives
developed across a huge range of disciplines including manyin statistics. The ones that we have
considered, and compared to our methods, in writing this paper are: loess by Cleveland and De-
vlin (1988), triograms, see Hansen et al. (1998) and Koenkerand Mizera (2004), locfit, see Loader
(1997), thin-plate splines, see Wahba (1990) and Green and Silverman (1993), and kriging, see
Cressie (1993). The latter two sets of comparisons are to be found in Heaton and Silverman (2008)
the others in section 7. There are many more possibilities: for example partition models, Denison
et al. (2002), stationary and non-stationary Gaussian processes, Gaussian Markov random fields,
see Rue and Held (2005) and empirical orthogonal functions (EOFs), see Jolliffe (2002) and, for
graphs, network kriging, see Chua et al. (2006).

Although our methods compare favourably to the first list of methods listed above our main
aim is not to conduct a ‘regression olympics’. As well as developing a new regression method
our main goal is to introduce new multiscale algorithms (forgraph and irregular data) and several
of the techniques listed above could be used in conjunction with our new multiscale algorithms.
For example, one might wish to construct a Gaussian Markov random field model on the ‘wavelet
coefficients’ of a structure.

However, we do believe that our methods have a strong set of advantages:

(a) our methods are fast and efficient in storage and for the multiscale part requireO(n) op-
erations forn sites. For the Voronoi version, the Voronoi tessellation can be computed in
O(n logn) operations, see, e.g., Fortune (1987). It is not always easyto discover the com-
putational complexity of some of the methods listed above. However, EOFs are based on
eigenvector determination (O(n3)), loess is quadratic in storage and some of the above algo-
rithms rely on variants of MCMC, which do not scale well to large problems.

(b) our methods are rotationally invariant. Some of the above methods are not.
(c) our methods are easily extendable to smoother ‘predict’and ‘update’ steps (see later for an

explanation of these). For methods such as triograms extensions to smoother basis functions
are not trivial, see Hansen et al. (1998). Moreover, our methods can even be further developed
to adapt to local smoothness conditions by use ofadaptivelifting, see Nunes et al. (2006) for
this in 1D.

(d) on a range of real and simulated examples reported in Section 7, our methods work well. The
examples include both discontinuous and smooth functions.It is reassuring that a method
developed to allow for possible discontinuities also work well in the smoother case.

The main disadvantage is that, apart from analogies with regular wavelets, there is currently no
substantial body of theory behind our methods. We discuss the reasons for this in section 8, but
some theoretical remarks are addressed in section 5.
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Fig. 1. An example krill intensity sampling scheme. The island of South Georgia is shown in the
bottom left of the plot. Each sample is indicated by a circle and the diameter, which is proportional to
the density of krill detected at that location. (Figure kindly supplied by Alistair Murray, British Antarctic
Survey)

1.4. Krill intensity estimation example
We first consider an example that existing wavelet techniques would find hard to solve and other
statistical techniques, such as kriging, might find challenging. Goss and Everson (1996) describe
an experiment designed to quantify the amount and distribution of krill in the south Atlantic ocean
around South Georgia. Figure 1 shows the interesting sampling design and a depiction of the de-
tected krill density. Clearly, the design is very far from being a regular grid, but itdoeshave a very
strong structure, which one might wish to take into account when performing spatial regression.
For example, in some applications one might be interested inregression on the transect itself, or in
regression over the whole domain of definition excluding, presumably, the island, where it is known
a priori that the krill intensity is zero. Indeed, the presence of structure or a hole in the data (e.g. is-
land) would be challenging for more global multivariate regression techniques. Our techniques can
take account of various kinds of structure of this sort and are applied to this data set in Section 7.1.

1.5. Structure of the article
Section 2 first reviews lifting and then introduces our variation on the theme: “lifting one coefficient
at a time”, then describes our scheme for irregular spatial data and graphs, and finally describes an
efficient computational approximation for the variance of our lifting coefficients. Section 3 de-
scribes our version of lifting to be applied to a function on agraph (a network). Such a network
might be constructed from, e.g. irregularly spaced data in Euclidean space or the data itself might
naturally arise in the form of a network. For example, in a rail transportation network one might
think of stations either as irregularly spaced points in 2D space or one might think of them as nodes
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in a network where the edges are railway lines. For irregulardata in Euclidean space Section 4
uses a Dirichlet tessellation to define neighbourhoods and constructs a lifting transform using those
neighbourhoods. Successful wavelet shrinkage depends on good compression abilities of the un-
derlying wavelet transform. Section 5 explores the theoretical basis for our work and describes
some compression studies. Section 6 details the new techniques that we use to perform coefficient
shrinkage on “one coefficient at a time” lifting transforms.“Scale” in lifting can be more of a con-
tinuous concept and the fixed dyadic scales of the regular DWTno longer exist in our work. We
describe several empirical Bayes methods designed to work with the more general concept of scale.
Section 7 contains a real life example and summarizes several simulation studies. The real example
considers regression of the krill data where coordinate information is used. A further real life ex-
ample, concerned with denoising of train delay data on a railnetwork can be found in Jansen et al.
(2008). Finally, section 8 concludes and provides ideas forfurther work.

2. General discussion of lifting

2.1. The lifting approach to the standard discrete wavelet transform
Let us begin with a general specification of lifting as it has been considered previously. Given a
vectorx of data, we divide the indices ofx into two subsets, denotedI andJ for the moment. For
example, in 1D,I might be the odd indices andJ the even. Denote byxI the vector(xi, i ∈ I) and
xJ the vector(xj , j ∈ J). A single lifting step works as follows:

Predict UsexJ to yield an appropriate predictor̃xI of xI , and the residual is(xI)∗ = xI − x̃I .

Update UpdatexJ by adding toxJ a suitable linear transform of(xI)∗.

A specific example is the Haar transform of the data. Suppose the original vectorx is of length
16 (for definiteness). Initially, defineI to be the odd indices{1, 3, 5, 7, 9, 11, 13, 15}, andJ to be
the even indices{2, 4, 6, 8, 10, 12, 14, 16}. The prediction is carried out by estimating each odd-
indexed element by the next element in the sequence, sox̃2m−1 = x2m for m = 1, . . . , 8. Hence
the modified coefficients(xI)∗ are given byx∗2m−1 = x2m−1 − x2m. These correspond to the
‘detail’ coefficients in the Haar transform of the data. The update step is defined by

x∗2m = x2m + 1
2x

∗
2m−1 = 1

2 (x2m−1 + x2m)

so the(xJ )∗ represent ‘scale’ coefficients at the next level, a smoothedversion of the original data.
The lifting steps can be performed ‘in place’ by the two assignments

xI := xI − xJ followed by xJ := xJ + 1
2x

I . (2)

For the next step of the Haar transform, we proceed in exactlythe same way, settingI = {2, 6, 10, 14}
andJ = {4, 8, 12, 16}. These correspond to the odd and even indices of the scale coefficients at
the previous level. We then continue the cascade by settingI = {4, 12} andJ = {8, 16}, and
for the final stepI = {8} andJ = {16}. This completes the entire multiresolution analysis of the
original vectorx, and the coefficients obtained are, in a suitable order, rescaled versions of those
obtained by the Mallat discrete wavelet transform. At each stage of the process, the current scale
coefficients are divided into two equal sets, one of which is processed in the predict step to give the
detail coefficients, and the other is updated to give the scale coefficients for the next stage.

The description we have given uses the Haar transform for simplicity, but all classical wavelet
filter banks can be factored into a sequence of lifting steps,see Daubechies and Sweldens (1998).



6 Stefan Wager

An attractive feature of lifting is that the inverse transform can be constructed mechanically. The
step (2) is inverted by reversing the assignment order, and changing the signs, to give

xJ := xJ − 1
2x

I followed by xI := xI + xJ . (3)

To invert the whole transform, the steps are considered in the opposite order, starting withI = {8}
andJ = {16} and finishing withI = {1, 3, 5, 7, 9, 11, 13, 15}, andJ = {2, 4, 6, 8, 10, 12, 14, 16}.

2.2. Lifting one coefficient at a time
When considering the standard wavelet transform, the setsI andJ correspond to odd and even
indices at the current level. We shall consider a different approach, where each setI is just a single
coefficient. The general paradigm we adopt will be as follows.

The first step is to construct an orderin, . . . , iℓ+1 in which the wavelet coefficients, or their
equivalents, will be obtained. Our reason for numbering in reverse order is the analogy with scale
levels in the standard wavelet transform; the first coefficients to be found will be those corresponding
to the finest level of detail in the function, and at the end of the processℓ coefficients will remain,
corresponding to the scaling coefficients at levelℓ.

For eachir, we construct, by some appropriate means, a set ofnr ‘neighbours’Jr, which may
not contain anyis for s > r. The underlying notion is that the valuesxj for j ∈ Jr may reasonably
be used to construct at least an approximate prediction ofxir . For eachr, our lifting transform
requires the definition of two vectorsar andbr, each of lengthnr.

At each stage, the transform consists of the same two steps aspreviously, firstly redefiningxi
to be its residual from the prediction from its neighbours, and then updating the neighbour values
appropriately. To avoid notational clutter, we suppress the explicit dependence onr of i, J , a andb.
The step of the transform can then be written

Predict: xi := xi − a′xJ followed by Update: xJ := xJ + xib. (4)

Again, just as before, the inverse of this transform can be written down mechanically, by revers-
ing the order of the steps and changing the signs:

xJ := xJ − xib followed by xi := xi + a′xJ . (5)

For computational purposes, it is convenient to specify andstore the transform in a standard
format, as a ragged array withn− ℓ rows. We call this thelifting coefficient array. Thesth row of
the array corresponds tor = n+ 1− s and consists of the sequence of3nr + 2 integers

ir nr Jr ar br.

The computational burden of lifting is the same in order of magnitude as the number of elements in
the lifting coefficient array, and is certainlyO(Mn) whereM = max{nr}.

In the remainder of the paper we will consider ways of constructing the lifting coefficient array,
with particular attention paid to the case of spatial irregular data. Even the Haar transform as already
discussed can be calculated one coefficient at a time. The order in which the indices are considered
would be first the odd indices, in any order, then the indices not divisible by 4, then those not
divisible by 8, and so on. In every case each index would have asingle neighbour, so thatnr = 1,
and we would havear = 1 andbr = 1

2 . The neighbourJr would be, in every case, the smallest
integerj > ir that is not a member ofir+1, . . . , in.

Further information on lifting in more than 1D for data not ona lattice can be found in Daubechies
et al. (1999). For data on a lattice see Uytterhoeven and Bultheel (1997) and Kovačević and
Sweldens (2000)
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2.3. Aspects of lifting transforms for spatial irregular data
In this section, some specific issues relevant to lifting transforms for spatial irregular data are con-
sidered, but the discussion has wider validity for methods based on neighbours in any sense.

Suppose that we have valuesfi of a function atn points, orsites, ti Initially, we assume that the
function is approximated by an expansion of the form

f(t) =

n∑

k=1

cnkφnk(t) (6)

whereφnk are scaling functions such that

φnk(ti) = δik, (7)

whereδik is the Kronecker delta, at least approximately. If the scaling functions satisfy (7) exactly
then the functionf will interpolate the valuesfi if we setcnk = fk. Denote byInk the integral of
φnk with respect to some suitable measure.

The stages of our procedure are numbereddownwardsfromn, so the first stage to be carried out
is stagen, followed byn− 1, n− 2, . . . . At stager, letSr be the indices of the scaling coefficients,
in other words those indices for which no wavelet coefficienthas yet been calculated. Initially
Sn = {1, . . . , n}. Let Dr = {ir+1, . . . , in}, the indices of the detail coefficients already found.

We assume that we have an expression forf of the form

f(t) =
∑

ℓ∈Dr

dℓψℓ(t) +
∑

k∈Sr

crkφrk(t) (8)

where theψℓ are wavelet functions with zero integral, and theφrk are scaling functions at levelr,
with integralIrk. We now set out the process whereby the various quantities, functions and sets are
updated to the next stage, whereby we find an expression corresponding to (8) but withr replaced
by r − 1.

Firstly, chooseir to be the value ofk that minimizesIrk overk in Sr; writing i = ir, the next
wavelet coefficient to be constructed isdir , say. At every stage, we eliminate the scaling function
with smallest integral. SetSr−1 = Sr \ ir andDr−1 = Dr ∪ ir.

Let Jr = J be the set of neighbours ofir as specified in the lifting coefficient array. The
specification ofJr and the weight vectorar will depend on the particular lifting strategy we adopt,
and will be discussed in subsequent sections of the paper. Wecalculate the coefficientdir in the
way specified in (4), setting

dir = crir −
∑

j∈Jr

arjcrj (9)

and, forj in Jr,
cr−1,j = crj + bjdir . (10)

For all otherj in Sr−1 we setcr−1,j = crj.
If the functionf(t) is constant in the neighbourhood of the sitetir we would wish the wavelet

coefficient to be zero, so we conduct the predict step with a set of weights satisfying
∑
arj = 1.

With judicious choice of weights we can obtain a zero coefficient for locally linear functions and a
near-zero coefficient for locally smooth functions, but this will be discussed below.

We next set out the way the scaling functions are updated. Forany fixedj ∈ Jr, consider the
special casef(t) = φr−1,j(t). For thisf , from (8), we havecr−1,j = 1 and all othercr−1,s,
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s 6= j andds equal 0 fors = ir, . . . , in. Hence, inverting the lifting steps,crj = 1, from (10), and
crir = aj from (9). Therefore, by the expansion (8) forf ,

φr−1,j = φrj + arjφrir . (11)

To find the integrals of the scaling functions at the next stage, integrate (11) to obtain

Ir−1,j = Irj + arjIrir for eachj ∈ Jr. (12)

For j in Sr−1 that are not members ofJr, the same argument witharj = 0 this givescrj = cr−1,j

as well ascrir = 0. This implies thatφr−1,j = φrj andIr−1,j = Irj .
To find an expression for the wavelet, we now considerf = ψir , so thatdir = 1 and all other

coefficients at stager−1 are equal to zero. From (10) we then havecrj = −brj for j in Jr. Equation
(9) then givescrir = 1−∑

j∈Jr
arjb

r
j . Therefore we have

ψir (t) = (1−
∑

j∈Jr

arjb
r
j)φrir (t)−

∑

j∈Jr

brjφrj(t)

= φrir (t)−
∑

j∈Jr

brj(φrj(t) + arjφrir (t))

= φrir (t)−
∑

j∈Jr

brjφr−1,j(t), (13)

by substituting the expression (11).
The weightsbrj are found from the requirement that the integral of the wavelet is zero. By

integrating (13), this requirement is equivalent to
∑

j∈Jr

brjIr−1,j = Irir , (14)

where the integralsIr−1,j have been found using (12). For reasons of numerical stability, we use
the minimum norm solution of the equation (14), setting

brj = Irir Ir−1,j/
∑

k∈Jr

I2r−1,k. (15)

Within the process it is not necessary to express the wavelets or scaling functions explicitly, but
the integrals of the scaling functions choose the coefficient ir and to specify the weight vectorbr.
Therefore, in order to initiate the process, the integralsInj of the original scaling functions need be
specified. Apart from these integrals, we also need appropriate ways of choosing the vectorsJr and
ar of neighbours and prediction weights at each stage. We shallconsider two particular approaches
in detail later in the paper, the first based on Voronoi polygons and the second on MSTs.

Finally, there are circumstances within which it is helpfulto have a notion of the scale of each
wavelet function. A convenient measure of this scale for thewaveletψi for ir is the integralIrir of
the scaling function for siteir at the last stage beforeir is removed from future consideration. We
denote this scale byαir . In the natural neighbour method described later,αir will be the area of the
last Voronoi cell based on siteir. In general, for any fixedr, and assuming all the weightsaj ≥ 0
we have

αj = Ir−1,ir−1
≥ Ir,ir−1

≥ Ir,ir = αi

and so the scalesαi are a monotonic function of the indexr and the order in which lifting determines
the coefficients.
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2.4. The dual basis functions
The lifting procedure can be thought of in two ways. On the onehand, if we have a functionf
of the form (6), then expansion (8) gives an expression off in terms of a multiresolution basis,
where effects of different scales are captured by differentwavelet coefficients. On the other hand,
consider lifting as a linear tranformation of a vector ofvaluesx, yielding a coefficient vector̃x,
say, whose elements have a multiresolution interpretation. In either case the relation between the
original function or data, and the derived coefficients, canbe elucidated by investigating the dual
basis functions or vectors. More can be found in Section 2.4 of Jansen et al. (2008).

2.5. The variance of the sample coefficients
In this section, we set out an approach, which operates inO(Mn) time and storage, for finding,
approximately, the variance of each wavelet and scaling coefficient as obtained by lifting. Of course,
because lifting operates linearly, for reasonably small data sets it is possible to calculate the full
covariance matrix of the coefficients by successively carrying out on the covariance matrix the
row and column operations corresponding to the lifting steps. This is a much more burdensome
calculation, requiringO(Mn) vector operations on vectors of lengthn, but makes it possible to
evaluate the usefulness of the approximate method.

Suppose that the original dataxk are independent random variables with variancesVk. Consider
a single lifting step of the form (4), writingx∗ for the values after the lifting has taken place. Since
x∗i = xi −

∑
j∈J ajxj , we have

varx∗i = Vi +
∑

j∈J

a2jVj and cov(x∗i , xj) = −ajVj . (16)

Sincex∗j = xj + x∗i bj, it follows that

varx∗j = Vj + b2jvarx∗i + 2bjcov(x∗i , xj) = (1 − 2ajbj)Vj + b2jvarx∗i . (17)

It follows that the effect of a single lifting step is to replace the variances byV ∗
k , where

V ∗
i = Vi +

∑
j∈J a

2
jVj

V ∗
j = (1− 2ajbj)Vj + b2jV

∗
i for j ∈ J .

(18)

The approximation we use is to neglect any correlations between the coefficients obtained at the
next stage, but simply to iterate the calculations (18). This will yield an algorithm essentially of
the same complexity as the lifting algorithm itself, and indeed that can similarly be carried out in
place. Some experiments on lifting arrays obtained from Voronoi polygons, in the way discussed
later in the paper, demonstrate that only a little accuracy is lost, mostly in the large-scale wavelet
coefficients and in the final scaling function coefficients, which tend to have small variance anyway.

In some practical situations the assumption of independentxk variables is not tenable. Such a
situation is beyond the scope of the present paper. However,we can envisage prior or estimated
information on the covariance structure can be fed into the calculation of the coefficients’ variance
along the lines of methods used for regular wavelet shrinkage such as Kovac and Silverman (2000).

3. Lifting for graphs

We introduce a lifting scheme that essentially provides a kind of ‘wavelet transform on a network’.
Here we mean a ‘network’ to be a ‘function on a graph’. We consider our graphs to have arisen
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in one of two ways. One way is that the graph is supplied to us predefined — for example a
transportation network or communications network. The other way is that data is supplied in a form
that can be converted into a network. For example, irregularly spaced data inK-dimensional space
on which a graph can be induced by calculating interpoint distances and constructing, say, a MST.

3.1. Minimal spanning trees and other tree-based approaches
For data sets in 2D, approaches based on Voronoi cells in Section 4 are attractive, but in higher
dimensions they become both computationally infeasible and philosophically inappropriate. The
number of Voronoi neighbours of each point will typically belarge and the computations will be-
come burdensome.

Here, we consider an alternative lifting approach based on trees. In principle, any tree can be
used as the basis of our scheme. In the case ofK-dimensional data, useful trees are those that
reflect the neighbourhood structure of the points. If the original data sitesti lie in aK-dimensional
Euclidean space, a natural approach is to use MSTs, see e.g. Krzanowski and Marriott (1995), which
are easily computed. Other types of tree might be useful for particular applications, and these would
be a possible topic for future work.

Some data sets naturally live on a tree rather than in some Euclidean space. For example, the
data collection transects for the krill data depicted in Figure 1 constitute a tree. More generally, we
can extend our “lifting on a tree” to more general graphs as long as there is a suitable neighbourhood
structure. For example, in protein modelling, a tree could be defined by the chemical bonds in a
large molecule. In this case, wherever it is necessary to determine distances between points, it may
be appropriate to use distances in the original tree or graph.

For functions on a graph our methods provide a kind of ‘wavelet transform on a network’. By
restricting the analysis to a narrow range of scales our methodology provides a kind of ‘coarse
Fourier transform’ of a network function (similar to a single scale level of wavelet coefficients
acting as a bandpass filter). See Smola and Kondor (2003) and Belkin et al. (2004) for other work
on regularization of functions on graphs.

3.2. General aspects of tree-based lifting
The first step in the lifting scheme as set out in Section 2.3 was to specify the initial scaling functions
φnk and to find their integrals. In the tree context, we define the scaling functionφni to be 1 at the
nodei and zero at all other nodes of the tree. At each stage of our process, we consider the scaling
functions and wavelets as being defined on the original nodes. We define a set of weightswi and
then define the ‘integral’ of any function having valuefi at nodei as the weighted sum

∑
i wif(i).

In order to relate the weights to the tree on which we are working, we definewi to be the sum of the
lengths of the edges from the nodei to its immediate neighbours. We arbitrarily use the sum of the
lengths but the average of the lengths is another possibility that we have used.

At each stager, we calculate the wavelet coefficient corresponding to the nodei with the small-
est current value ofIri. LettingJ be the set of current neighbours ofi, we have to define a suitable
set of weightsa. We may either letJ be the immediate neighbours within the tree, or we may
include second- or even higher-order neighbours in the setJ .

Once the setJ is defined, we need to define the prediction weight vectora. For reasons explained
below, we mostly useinverse distance prediction weights, settingaij = cδ−1

ij , whereδij is the
distance from pointi to pointj, andc is chosen so the weights sum to1. In the extreme case where
J contains only one indexj, the value at nodej is used as the predictor at nodei.
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Alternatively, in some circumstances, e.g. the krill data,the nodes do possessbona fideEu-
clidean coordinates. In which case the tree can be used to define the neighbours but the coordinates
are used by least squares to form prediction weights. To distinguish between these two variants we
refer to them either as “tree with inverse distances weights” or “tree with least squares coordinate
weights”. As an example of these two algorithms in action seeFigure 2.

Having defined the weight vectora, we can update the integrals using equation (12), and calcu-
late the update weightsbj using the equation (15).

The final step is to update the neighbourhood structure. We shall assume that as a pointi is
eliminated from consideration, the spanning tree is modified locally, only changing the linkage
structure between points previously linked directly toi. If the pointi to be removed has immediate
neighboursj1, . . . , jm, say, then we replace the links betweeni and thejk by the links of the
minimum spanning tree of the points indexed byj1, . . . , jm. This procedure maintains the tree
structure of the pattern of links between points under current consideration.

How many orders of neighbours should be used in the prediction part of the lifting scheme?
“Mixed scale” points cause minor practical problems for ourmethod based on Voronoi tessellations,
mostly near the boundaries. They are the source of the long and thin Delaunay triangles that we
discuss, with some solutions to the resulting problems, in Section 4.3.

On average, points in a tree have fewer neighbours than thosefrom a Voronoi tessellation. For
example, compare the Voronoi mosaic for the krill data in Figure 2 (right) in Jansen et al. (2008)
with the ship track in Figure 2 (bottom left). This can be madeprecise: there are(n− 1) edges in a
tree constructed onn points so the average number of neighbours for a point in a tree is2(1− 1/n)
irrespective of dimension or distribution of the points, orthe method of construction of the tree.
For Voronoi tessellations the average number of neighboursis higher, nearer 6 in 2D for moderate
numbers of points, see Penrose (1996) and Penrose and Yukich(2003). In a tree, therefore, if only
immediate neighbours are considered in the set of neighboursJ , there is less opportunity for “mixed
scales” to occur. Alternatively, we may wish to include higher-order neighbours inJ , in order to
obtain better predictions. If one used higher-order neighbours, one could either use neighbours up
to a given order, or one could increase the order of the neighbours until the size ofJ reached a
certain size.

Finally, our algorithm is not just restricted to trees. The same steps can be followed for any
general graph where distances and integrals can be sensiblydefined. For example, with the UK rail
network, see section 7.2 in Jansen et al. (2008).

3.3. Why use inverse-distance prediction weights?
We now explore a correspondence between inverse distance prediction weights and local linear
prediction. Suppose we are working on a tree, that we are predicting the value at pointi, and that
J = {j1, j2, . . . , jr} for somer ≥ 2. Also, the tree is defined only by its linkage structure and the
lengthsδij of its edges. We consider a particular Euclidean embedding of the tree near the pointi.

Define r unit vectorsuj in (r − 1)-space to be as far from one another on the unit sphere,
so that the end points of theuj form a line segment, equilateral triangle, regular tetrahedron, or
higher-dimensional regular simplex, in all cases centred at the origin. We then have

∑
j∈J uj = 0.

Now place vertexi at the origin, and place vertexj at δijuj for j ∈ J . In the case where there are
two neighbours, this is placesi on a straight line between its two neighbours. More generally, this
corresponds to arranging the edges around vertexi to be as far as possible in different directions.

Given valuesyj at vertexj for eachj in J , define the linear functionL(t) = a′t+ b in (r− 1)-
space to be the interpolant of the valuesyj at the pointsδijuj ; the graph of this function will be the
unique hyperplane through ther points(δijuj , yj) in r-space. Definey∗ to be the value obtained
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by inverse-distance weighting the valuesyj . We now have, settingc such thatc
∑

j δ
−1
ij = 1,

y∗ = c
∑

j∈J

δ−1
ij yj = c

∑

j∈J

δ−1
ij L(δijuj)

= c
∑

j∈J

δ−1
ij (δija

′
uj + b) = ca′

∑

j∈J

uj + b = b = L(0).

It follows that, with this particular embedding of the tree in Euclidean space, the linear interpolant
at the vertexi to the valuesyj at the verticesj is the inverse-distance weighted averagey∗.

4. Lifting based on Voronoi polygons

In this section we consider lifting for spatial irregular data based around Voronoi polygons and
Delaunay triangulations. The basic idea is to construct, ateach stage, a triangulation of the data
sites. The neighbours of any site are then the sites joined tothat site by edges within the triangula-
tion. Once a detail coefficient corresponding to a particular site has been found, the triangulation is
appropriately modified to remove that site.

4.1. Voronoi polygons, Delaunay triangulations and Dirichlet tessellations
Consider a set of sites in the plane. LetΩ be a suitable region in the plane containing all the sites
under consideration. The regionΩ may, for example, be the whole plane, or a suitable rectangle, or
the convex hull of the sites. Comments about the precise choice ofΩ will be made later. TheVoronoi
cell of any particular site is the set of points inΩ nearer to that site than to any other. Because
the boundaries of each cell are all perpendicular bisectorsof lines joining two sites, the Voronoi
cells are polygons, and theDirichlet tessellationis the partition of theΩ into these polygons. See
Figure 2 of Jansen et al. (2008) for an example. Two sites are neighbours if their Voronoi cells have
a boundary in common, and the joins of all pairs of neighboursforms theDelaunay triangulation.
There are algorithms for finding the Delaunay triangulationin the first place, and for updating the
triangulation when a site is removed. For further detailed information see Okabe et al. (1992); for
more information on these methods in statistics see Herrmann et al. (1995) or Allard and Fraley
(1997) for example.

At each lifting stage, the neighboursJ of a sitei under consideration are the neighbours ofi
within the current Delaunay triangulation, and the values at these neighbours are used in the predict
and update steps. More sophisticated methods could be basedon higher order neighbours.

The paradigm set out in Section 2.3 requires two more ingredients, the integrals of the initial
scaling functionsφnk, and a method of specifying the prediction weightsar at each stage. Provided
Ω is a finite region, a natural definition of the initial scalingfunctionφnk is the indicator function of
the Voronoi cell of the sitetk, and so the integral of the scaling function is the area of this Voronoi
cell. We consider two main methods of prediction, thenatural neighbourmethod as proposed
by Sibson (1981), and local least squares.

4.2. Natural neighbour interpolation
If site i is removed and the Dirichlet tessellation recomputed, the Voronoi cell of that site will be
divided among its neighbours. Assume the regionΩ is finite. LetAi be the cell corresponding to
sitei and letAij be the part of the cell made up of points whose next nearest site, afteri, is the site
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j. If site i is removed, thenAij will form part of the new cell of sitej. If j is not a neighbour ofi
thenAij will be empty.

Lifting using natural neighbour interpolation works by setting aj = |Aij |/|Ai| for each neigh-
bourj of i, where| · | denotes area. Provided the cellAi does not intersect the boundary ofΩ, the
prediction weights thus obtained through natural neighbour interpolation will predict a constant or
linear function perfectly, and have other attractive regularity, continuity and stability properties. A
corollary of the perfect prediction of linear functions is that if a function is linear, then its wavelet
coefficients will be zero except for possible boundary effects. If the function is approximately linear
in the region of the siteti and its neighbours{tj : j ∈ J}, then the linear prediction based on the
neighbours will be quite good and so the wavelet coefficient will be small. Another good property
is that the scheme isinterpolating; if the siteti is very close to one of its neighbourstj then the
prediction at siteti will be close to the value at sitetj , and will tend to this value in the limit as site
ti coincides with sitetj .

One disadvantage of the natural neighbour method is its computational intensity, though the
method does remain linear in the number of sites.

4.3. Local least squares prediction
A computationally simpler approach to prediction uses local least squares. A least squares plane
is fitted to the values at the sitestj for j in J , and used to interpolate at the siteti. This scheme
has the property that if the functionf is linear over the siteti and its neighbours, then the wavelet
coefficient is zero. Therefore it shares some of the good properties of the natural neighbour method.

There are, however, some numerical and conceptual issues with the local least squares method
which require careful attention. For example, unlike the natural neighbour method, the local least
squares method is not interpolating. The residuals from theleast squares plane, through the values at
the sites with indicesJ will not, in general, be zero. Therefore, even if the siteti is very close to one
of its neighbours, the predicted value will not necessarilybe close to the value at that neighbour, and
more distant neighbours will still have a relatively heavy impact on the prediction. This is in contrast
with the natural neighbour method, where more distant neighbours are automatically downweighted
in the prediction, because they have small values of|Aij |. In the local least squares approach it
is desirable to avoid neighbour configurations with a mixture of short and long edges, because
these give rise to relationships between sites that are a long way apart on the scale currently being
considered. Because distant neighbours will influence the prediction, for a smooth function the
magnitude of a wavelet coefficient at a site will be affected by the distance to its furthest neighbour,
and so the method may have worse compression properties thanthe natural neighbour approach.
Triangles which are far from equilateral are likely to occurnear the boundary, where two fairly
distant sites may still have Voronoi cells that touch one another, particularly if the boundary ofΩ
is some distance from the data boundary. This can be seen in the right hand plot of Figure 2 from
Jansen et al. (2008).

One way of dealing with this issue is to remove from the triangulation those narrow triangles
with two vertices on the boundary where the opposite angle isobtuse. This corresponds to redefining
Ω to be the convex hull of the sites under current consideration, so that sites will only be considered
to be neighbours if their Voronoi cells touch within the convex hull. A more relaxed policy could
allow obtuse triangles, but only up to 120 degrees, say. In any event, the approach may need some
modification at the corners of the configuration, where the approach described may leave sites with
a single neighbour, and in this case it may be appropriate to re-introduce narrow triangles.

A related matter is the treatment of sites lying some distance from the remainder of the configu-
ration, so that the angle subtended by all the site’s neighbours is quite small. In this case, prediction
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is more like extrapolation, and can be quite unstable. A good, if fairly ad hoc, way of dealing with
this is to project both the siteti and the set of neighbours{tj : j ∈ J} onto the first principal
component direction of the set{tj : j ∈ J}. This is equivalent to using a least squares fitting
plane constrained to have gradient in this direction. Especially in this case, the raw local linear least
squares weights may fall outside the range[0, 1], though it will be only in rather pathological cases
that this will happen in the modified method. The natural neighbour approach cannot suffer from
this instability because its weights are necessarily in[0, 1].

4.4. Conclusions and further comparisons

Whichever method is used, it is necessary to retriangulate the configuration each time a site is
removed. If the natural neighbour method is used, then the Dirichlet tessellation within the region
Ω will be needed for the next stage, though of course only the cells neighbouring the siteir will
have to be modified. It is conceivably possible to modifyΩ at each stage but there is not usually any
particular point in doing so. Overall, the natural neighbour method is more stable and more elegant,
but at a considerable computational cost, which is usually not warranted.

5. Aspects of theory

Wavelet shrinkage is based on three properties of wavelet decompositions. The first is smoothness
of the wavelet basis, including numerical convergence of the refinement scheme. The second is
numerical stability and the third is sparsity of a wavelet decomposition. In classical dyadical or
translation invariant transforms, the analyses of the three properties largely coincide and reduce to
the solution of the two-scale equationϕ(x) =

∑∞
k=−∞

√
2hkϕ(2x − k). If for given scaling co-

efficientshk, the scaling functionϕ(x) can be found by a numerically converging iteration, then
the framework of multiresolution analysis guarantees stable decompositions and reconstructions,
see for instance (Mallat, 1998, Chapter VII). Sparsity is determined by the support ofϕ(x) and
by the linear approximation power of the scheme for smooth functions. The approximation power
depends on the maximum degreep of polynomials that can be represented exactly by an expansion
xp =

∑∞
k=−∞ ckϕ(x − k), wherep + 1 is the number of dual vanishing moments of the wavelet

transform. Numerical stability, on the other hand, is ensured by the concept of Riesz bases, encap-
sulated in the definition of a multiresolution analysis. A Riesz basis is “almost” orthogonal in the
sense that the norm equivalence (known as Plancherel’s or Parseval’s equality) holds within finite
bounds. The norm equivalence is important in data processing, as it guarantees control on the effect
of processing coefficients after inverse transform: small operations on wavelet coefficients result in
small effects on the data.

Both stability and sparsity thus depend on the solution of the two-scale equation. In the settings
described in this paper, the two-scale equation itself is scale dependent: both geometry and configu-
rations are different in every step. As a consequence, the basis functions are no longer dilations and
translations of a single father scaling function and the convergence analysis of the refinement pro-
cess, leading to the basis functions, becomes difficult, it at all possible. One of the few exceptions
is the convergence analysis of the cubic polynomial prediction refinement Daubechies et al. (2001),
based on a commutation principle for divided differences. The remainder of this section establishes
results on sparsity and stability that do not make use of the scaling functionϕ(x).
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5.1. Sparsity
The dual number of vanishing moments is controlled by prediction step in the lifting. The vanishing
moments condition leads to perfect representations of polynomials. Smooth functions that are well
approximated by polynomials, should also be well approximated in the scaling bases, such that their
wavelet coefficients are small and large coefficients correspond to singularities only.

The approximation power of a wavelet decomposition for smooth functions is formalised by the
concept of Lipschitz-regularity.

DEFINITION 1. A functionf(x) is Lipschitz-ν in a pointx0 if and only if there exists a polyno-
mialpx0

(x) of degreer = ⌈ν⌉−1 and a finite numberC such that|f(x)−px0
(x)| ≤ C ·|x−x0|ν−r.

A function is uniformly Lipschitz-ν on an intervalI is it is Lipschitz-ν in all pointsx ∈ I with con-
stantC independent fromx.

It is well known Jaffard (1991) and straightforward to provethat the coefficients of a uniformly
Lipschitz-ν functionf in an orthogonal or bi-orthogonal equidistant wavelet decomposition with
L2-normalised basis functions satisfy|wj,k| ≤ C2−j(ν+1/2). This results follows easily from the
expressionwj,k = 〈ψ∗

j,k, f〉 with ψ∗
j,k theL2-normalised dual wavelet function at scalej, locationk

and〈·, ·〉 the usualL2 inner product. Extension to 2D is straightforward. Unless an explicit rescaling
takes place, lifting works with unnormalised basis functions. That is, applied to 1D regularly spaced
data, the primal wavelet basis functions would beψ(2jx− k) and the corresponding duals are then
2jψ∗(2jx − k), leading to coefficients satisfying|wj,k| ≤ C2−jν . On irregular data points, in
absence of strong convergence results, similar bounds on wavelet coefficients can be established,
assuming a weak statement of convergence. The following result is stated for lifting with linear
least squares prediction or natural neighbour interpolating prediction. Similar results hold for other
schemes.

PROPOSITION1. Let xi = x(ti) ben observations from a Lipschitz-ν functionx : R2 → R.
Consider lifting with linear least squares prediction or natural neighbour interpolating prediction.
Let Cr the (n − r) × n matrix that maps the observed data vector onto the scaling coefficients
crk after r lifting steps. LetD be the matrix that maps the observed data vector onto the vector
of wavelet coefficientsd. Assume that‖Cr‖∞ is bounded for allr and forn → ∞. Then, for
some constantC, independent fromn and r, |dir | ≤ Chν

∗

ir
, with ν∗ = min(ν, 2) and where

hir = max{‖tp − tq‖, p, q ∈ Iir} with Iir = {p ∈ {1, . . . , n}, Dir,p 6= 0}. That is, the scale
hr of coefficientdir is the maximum distance between pointstp with a nonzero contribution in the
calculation ofdir .

Proof. We assume here that1 < ν ≤ 2. The proof can be repeated with slight modifications
if ν ≤ 1 or ν > 2. Define x̃(t) = x(tir ) + ∇x(tir )′(t − tir ). It can be verified thatε(t) =
x̃(t)−x(t) satisfies|ε(t)| ≤ C‖t−tir‖ν . Both local least squares prediction and natural neighbour
interpolation schemes have the linear reproducing property (this is the local coordinate property
Sibson (1980) in the case of natural interpolation). As a consequence, when the wavelet transform
is applied tõx(t), then all intermediate detail coefficients are zero, i.e.,d̃ir = 0, thereby annihilating
a priori all update step effects. Thus, the scaling coefficients ofx̃(t) satisfyc̃rj = x̃j . The wavelet
analysis is said to have two dual vanishing moments.

Denote bydεir the wavelet coefficients ofε(t), then|dir | = |d̃ir + dεir | = |dεir | ≤ ‖Cr−1‖∞ ·
‖ar‖1hνir . If ‖Cr‖∞ is bounded, then‖Cr−1‖∞ · ‖ar‖1 can be bounded by a constantC.

Remark. The assumption that‖Cr‖∞ is bounded, can be seen as a partial stability condition.
It depends on the choice of update steps and on the homogeneity of the data pointst. Scattered data
that are distributed in an inhomogeneous way, may cause large coefficients. A formal definition of
homogeneity is given in Section 5.2.
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Remark. Checking that‖Cr‖∞ is bounded, may proceed through theAdjoint lifting transform
Jansen (2007). The adjoint transform for lifting in Equation (4) is an update-first scheme and reads
as

Update xJ := xJ + axi and then Predict xi := xi − b′xJ

The adjoint transform switches the roles of primal and dual basis functions, by using the prediction
coefficients in an update step and vice-versa. The inverse adjoint transform starting fromdir = 0
andcrℓ = 0, except for one indexℓ = k reveals thek-th row ofCr.

Based on this result for smooth functions, one can constructa space of “nearly” smooth func-
tions, in a similar way as Besov or Triebel spaces. The smoothness space is defined in terms of the
second generation wavelet coefficients. Large coefficientsare allowed, if they do not dominate the
global decay. That is, we define the second generation Besov sequence norm as

‖f(t)‖bνp,p =

n∑

r=1

h−νp
ir

|dir |p‖ψir‖pLp
. (19)

This can further be extended to a three-parameter norm‖f(t)‖bνp,q , with p 6= q. The parameterp
measures the sparsity within scale while the parameterq controles the decay rate across scales. This
definition of Besov sequence spaces corresponds to a discretisation from a continuous time-scale
analysis Donoho et al. (1998). As the second generation wavelet transform is no longer a discretisa-
tion of a continuous wavelet transform, there are several possible ways for further extension of the
definition of Besov spaces to the case wherep 6= q.

5.2. Stability
For proper processing, the set of wavelet functions should constitute a Riesz basis or stable basis
in the infinitely dimensional spaceL2(R

2). A Riesz basis is a basis that is almost orthogonal, in
the sense that the angles between any two vectors spanned by disjoint subsets of the set of basis
functions are bounded from below. The formal definition is the following.

DEFINITION 2. Let {φj , j = 1, . . . ,∞} be a Schauder basis of the Hilbert spaceH, then this
is a Riesz basis if

(a) It is almost normalised, that is, there are positive constantsa andA so thata ≤ ‖φj‖2H ≤
A, ∀j ∈ N.

(b) It is unconditional, that is, there are positive constants c andC, so that iff =
∑∞

j=1 wjφj ,
thenc‖w‖22 ≤ ‖f‖2H ≤ C‖w‖22.

The Riesz basis condition is hard to check in the context of irregularly spaced data, since it depends
on the subdivision of the irregular locations up to infinitely fine grids.

A necessary condition is that the multiscale grid is not arbitrarily inhomogeneous. Homogeneity
in 2D is defined by the minimum angle in a triangulation. Letθ∆j

be the minumum angle in the
triangulation at scalej, then we assume that, for allj = 1, . . . , n and forn → ∞, θ∆j

> θ∗∆, for
some positive numberθ∗∆.

A necessary, but far from sufficient (Jansen and Oonincx, 2005, Pages 88-89) condition for
Riesz-stability is that the one level transforms (4) are uniformly bounded and boundedly invertible.
We have the following result.

PROPOSITION2. Given a homogeneity constantθ∗∆, the one level transforms of a lifting trans-
form with local least squares prediction, inverse distanceprediction or natural neighbour interpo-
lation and with minimum norm update, are uniformly bounded and boundedly invertible inj.
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Proof. Thanks to the specific structure of lifting and its immediateinvertibility property, it is suf-
ficient that prediction and update vectorsa andb are uniformly bounded. The number of nonzero
entries in these vectors is bounded by2π

θ∗

∆

. Any norm of the vectors is bounded if all nonzero entries
are bounded. The prediction coefficientsa lie between 0 and 1 for the inverse distance prediction
and for the natural neighbour prediction. It can be elaborated that they are bounded for the least
squares prediction, thanks to the lower bound onθ∆j

.
For the update coefficients, we have the following result.

LEMMA 1. If all 0 ≤ arj ≤ 1 and if ir is the value ofk that minimizesIrk, then the update
coefficientsbrj , as defined in (15) satisfy0 ≤ brj ≤ 1/2. Similar bounds exist ifarj are bounded by
values different from 0 and 1.

Proof. brj = IrirIr−1,j/
∑

k∈Jr
I2r−1,k with Ir−1,j = Irj + arjIrir . Clearly,brj > 0, and,

‖br‖∞ = Irir ·
maxk∈Jr

Ir−1,k∑
k∈Jr

I2r−1,k

=
maxk∈Jr

(Irj/Irir + arj)∑
k∈Jr

(Irj/Irir + arj)
2
.

Note that linear reproduction (two vanishing moments) implies that
∑

j∈Jr
arj = 1. Fornr = 1, we

havea1j = 1 and thusb1r = 1
(Ir1/Irir+1) ≤ 1/2. Fornr > 1, settingu = maxk∈Jr

(Irj/Irir + arj),

‖br‖∞ takes the shape off(u) = u
u2+R2 for u > 1 and withR > 1. It is straightforward to verify

thatf(u) ≤ 1/2.

5.3. Compression
Wavelet shrinkage relies on the ability of the underlying representation to compress functions into
sparse representations. Section 5 of Jansen et al. (2008) exhibit simulations that show our lifting
methods (especially Voronoi) possess compression abilities roughly in line with regular wavelets.

6. Bayesian shrinkage

Now consider the following model of observations subject tonoise:Zi = f(ti) + ǫi, where the
noiseǫi are independentN(0, σ2

i ) random variables. The grid locations are irregular but considered
fixed for the purposes of the analysis. Wavelet based smoothing algorithms estimatef by taking
an appropriate wavelet transform, modifying the coefficients in order to reduce noise, and finally
inverse transforming the updated coefficients. Because of the notion that the wavelet transform of
the unknown function is likely to be in some sense ‘economical’, some form of thresholding or
shrinkage procedure is used to process the observed coefficients. Soft and hard thresholding are
the best known thresholding methods, but more sophisticated shrinking may follow (among others)
from a Bayesian analysis of the noisy coefficients.

6.1. Prior model and posterior density
The essence of the thresholding problem is the following. Suppose we have a parameterθ and an
observationZ ∼ N(θ, 1). In the wavelet smoothing case,θ would be an individual coefficient
rescaled so that the empirical coefficient had unit variance. Following papers such as, Clyde et al.
(1998), Abramovich et al. (1998) and Johnstone and Silverman (2004) the assumption thatθ is a
coefficient from an economical expansion is modelled by using a mixture prior forθ of the form

θ ∼ (1− π)δ0 + πγ (20)
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whereγ is a symmetric density.
Johnstone and Silverman (2004) explore the advantages of using a heavy-tailed density forγ,

such as the density
γ(u) = (2π)−1/2{1− |u|Φ̃(|u|)/φ(u)} (21)

whereΦ̃(u) is the upper tail probability of the standard normal distribution. This density has tails
that decay asu−2, the same weight as those of the Cauchy distribution. For this reason we refer to
the density (21) as thequasi-Cauchydensity.

Supposeθ ∼ (1 − π)δ0 + πγ andZ ∼ N(θ, 1). Johnstone and Silverman (2004) set out
details of the calculation of the posterior densityf(θ|Z) and also of the marginal densityf(Z) =∫
{(1− π)δ0(u) + πγ(u)}φ(z − u)du.

6.2. Bayesian decision rule: posterior median
Once we have the expression for the posterior densityfθ|Z, we have various choices of point esti-
mates ofθ. The posterior mean is popular, but it lacks the thresholding property. UnlessZ = 0
the estimate will be non-zero, which does not accord with thenotion that the coefficient may well
be zero. An alternative is the posterior medianθ̃(z), satisfyingF̃θ|Z=z(θ̃) = 0.5. With the quasi-
Cauchy distribution forγ, this leads to a tractable expression forθ̃(z) in terms of the standard normal
distribution and its inverse. See Johnstone and Silverman (2005a) for details and implementation.

The posterior median rule is a strict thresholding rule, with the property that, for any givenπ,
there is a thresholdτ(π) such that̃θ(z) = 0 if and only if |z| ≤ τ(π). An alternative to the use
of the full posterior median is to use hard or soft thresholding with thresholdτ(π). The smaller
the probabilityπ the larger the thresholdτ(π), and the choice of prior probabilityπ that θ 6= 0
corresponds to the choice of threshold. It is this choice that we consider next.

6.3. Estimating the parameters (MLE)
Suppose that we have sequenceθi of coefficients and a sequence of observationsZi ∼ N(θi, 1),
for i = 1, 2, . . . , n. Suppose, initially, that theθi have independent prior distributions (20) all with
the same value ofπ, and that the observationsZi are themselves independent conditional on the
θi. Let g be the convolution ofγ with the standard normal density, so that the marginal density of
theZi is (1 − π)φ(z) + πg(z). Johnstone and Silverman (2004, 2005b) explore attractive features
of a marginal maximum likelihood (ML) approach to the choiceof π, chosen to maximize the log
likelihoodℓ(π) =

∑
i log{(1−π)φ(zi)+πg(zi)}. This procedure is an empirical Bayes approach.

First of all, the whole data set is used to estimate the parameterπ. The estimated value is then used as
a prior probability in the model (20) and the inference carried out for each coefficient separately. For
theoretical and practical reasons, the maximisation is usually carried out over a range ofπ bounded
below at a point corresponding to the threshold taking the ‘universal threshold’ value

√
2 logn.

In the case of a classical orthogonal wavelet estimate, the coefficients are arranged into lev-
els, and it is appropriate for the probabilityπ to be constant within levels but to be allowed to
vary between levels. To this end, each level of the transformis treated separately by the marginal
ML method, and an estimated parameterπj is obtained for each levelj. Typically, the parameter
decreases as the resolution increases. At the levels corresponding to fine-scale effects, the prior
probabilityπj is small and an observed coefficient has to pass a high threshold in order not to yield
an estimate of zero. At the coarser-scale levels, a smaller threshold will usually be appropriate.

In the lifting case, the division into ‘dyadic’ levels is no longer appropriate, and instead a number
of other possible approaches can be pursued. Overall, it canbe assumed that the prior used for
coefficientθi has probabilityπi of being nonzero. The criterion for choosing theπi is still the



Multiscale methods for graphs and irregular data 19

maximization of the marginal log likelihoodℓ(π1, . . . , πn) =
∑

i log{(1−πi)φ(zi)+πig(zi)}, but
subject to appropriate constraints on the parametersπi. Some possibilities are as follows.

Parametric dependenceThe coefficients are constrained to belong to a particular low-dimensional
parametric family. For example, for lifting one might constrainπi to be proportional to the
scaleαi, or perhaps to some powerαλ

i . This accords with the notion that there are singularities
of some sort in the underlying function. If the singularities are points,αi is proportional to
the probability of the wavelet encountering one of these singularities. For line singularities a
more appropriate model for this probability isα1/2

i , and so on for spaces of singularities of
different fractal dimension.

Artificial levels This approach is an adaptation of the dyadic structure of thestandard discrete
wavelet transform. One splits up the coefficients into levels in some arbitrary way, and one
possibility is simply to impose an artificial dyadic split, with the highest level containing
the half of the coefficients with finest scale, and subsequently lower levels successively one-
quarter, one-eighth, and so on of the total number of coefficients in the order defined by the
lifting scheme. An alternative is to group the coefficients taking account of the values of their
pseudo-scales. For example, ifα0 is the median scale of the coefficients, then levels could
be defined with coefficients with scales in ranges(2jα0, 2

j−1α0] for j ≥ 1, with the highest
level consisting of all those coefficients with scales up to and includingα0.

Parametric dependence within artificial levels The simplest approach using artificial levels is to
constrainπi to be constant within levels. An alternative is to allow a parametric dependence,
for exampleπi proportional toα1/2

i , with a constant of proportionality that is allowed to
depend on the level. Finally, whatever method is chosen, it may be appropriate to smooth or
interpolate the estimatedπi.

Monotone dependenceConceptually the simplest constraint on theπi would be to require only
thatπi increases as the individual scaleαi increases. Because of the convexity properties of
the log likelihood function, estimation ofπi subject to this constraint can be carried out using
an iteratively reweighted least squares isotone regression algorithm. Part of the standard the-
ory of least squares isotone regression is a convexity argument showing that the least squares
isotone regression function is piecewise constant. The same argument shows that the result-
ing estimatedπi are also piecewise constant functions of the scalesαi, and so this method
indirectly splits the coefficients up into levels, with constantπi within each level. Further
details are available from Johnstone and Silverman (2005b). See Figure 2 (Bottom right) for
an example of using such an algorithm.

The calculations for maximizing the log likelihood are easily set out. Define

β(w) = {g(w)− φ(w)}/φ(w) = w−2(ew
2/2 − 1)− 1.

Then, by simple calculus, we have∂ℓ/∂πi = β(zi){1+πiβ(zi)}−1, which is a decreasing function
of πi. Obviously, we always constrainπi ≤ 1. In addition, to avoid excessively high thresholds, and
in line with the theory developed in Johnstone and Silverman(2004), we impose a lower limit on
πi corresponding approximately to a threshold value equal to the universal threshold

√
2 logn. For

simplicity, we choose the lower limitπlo to satisfy the conditionP (θi = 0|zi =
√
2 logn) = 1/2,

which is equivalent to settingπ−1
lo = 1 + (n− 1)/(2 logn).

Details of the algorithms used to make the constrained ML choice of theπi for the parametric
and monotone dependence cases are set out in Johnstone and Silverman (2005a).
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6.4. Parametric dependence within artificial levels
Details of the parametric dependence algorithm can be foundin Johnstone and Silverman (2005a).
We consider the modifications necessary to adapt the procedure to the artificial levels case for lifting.

General setup: Suppose we have datazi for i = 1, . . . , n, and consider the basic modelπi =
ciζ whereci are known constants. In order to enforce the constraintsπlo ≤ πi ≤ 1 we refine this to

πi(ζ) = median{πlo, ciζ, 1}. (22)

Lettingg be the convolution ofγ with φ, the marginal log likelihood function is then given by

ℓ(ζ) =
∑

i

log[{1− πi(ζ)}φ(zi) + πi(ζ)g(zi)]. (23)

By the definition ofπi there is no loss of generality in consideringζ only over the interval[ζlo, ζhi],
say, whereζlo = πlo(max ci)

−1, andζhi = (min ci)
−1. If ζ < ζlo then allπi will be πlo and if

ζ > ζhi then allπi will be 1, regardless of how far outside the intervalζ lies.
For artifical levels: All of the artificial levels cases reduce to the same general form. Within

a particular levelL, we have (22), whereci are known constants such as 1 orα1/2
i , andζ is a

parameter to be estimated. The likelihood,ℓL, for the levelL is now (23) but where the sum is
now overi ∈ L. In the straightforward artificial levels case, all theci = 1, andℓL is a concave
function ofζ in [πlo, 1]. We haveℓ′L(ζ) =

∑
i∈L β(zi)/{1 + ζβ(zi)}, a decreasing function ofζ.

By checking the signs ofℓ′L(ζ) at the ends of the range it can be discovered whetherℓL(ζ) has its
maximum at one end or the other; if not, a binary search on the decreasing functionℓ′L(ζ) will find
the ML estimate. If theci are not all the same, then we apply the ‘parametric dependence’ approach
within each artificial level as described in Johnstone and Silverman (2005a).

7. Examples and comparisons

7.1. Multiscale lifting for krill data
Background.Goss and Everson (1996) report that as a by-product of a fish stock assessment study
an opportunity was taken to estimate the biomass of Antarctic krill on the South Georgia shelf by
the British Antarctic Survey (BAS). Goss and Everson (1996)state that krill biomass determination
is important because they are basic part of the “food web”. Krill are consumed by large numbers
of birds, mammals and fish but it is also increasingly being harvested for both human and animal
consumption. As well as potential over-fishing krill stocksare also under pressure from a variety of
other sources such as sea temperature rise or increased UV penetration of sea water.

Since the study was a by-product of another study the sampling points took little account of
the expected distribution of krill. Indeed, stations were selected for the fish abundance study and
the shortest overall track was selected that visited all of the sampling stations. Figure 1 shows a
selection from the transects and the sampled krill values along it. Figure 2 shows a different portion
of the krill data subjected to regression analyses using lifting with trees using both least squares
coordinate and inverse distance weights. Figure 3 shows estimates obtained using Voronoi lifting.

Fitting. For all of the regression estimates a small proportion of small negative values were
replaced by zero. In all estimates a lot of the original zero data values have been replaced by
very small intensity values. In Figure 2 it is interesting tonote the differences between the two
estimates around the [175km, 262km] location. The estimatebased on the MST estimates some
“lumps” of intensity, whereas the one based on the ships track estimates small intensities following
the ships path. There are at least two reasons for these differences: (i) the ships track only uses
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Fig. 2. Analyses of selected portion of krill data set. Circle radius (not Bottom Left) encodes square
root of krill density estimate in gm−2: largest value is 14981gm−2. Top left: krill density supplied by
BAS. Top right: MST lifted estimate with least squares coordinate weights and eBayesThresh applied
to lifting coefficients at all scales. Bottom left: circles indicate krill sample locations, line indicates
tree determined by ship transect. Bottom right: ship-determined transect tree lifted estimate using
inverse distance weights and eBayesThresh with monotone dependence of πi.
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neighbours from the previous and next sample in the track whereas the MST algorithm will use
nearest neighbours irrespective of the track; (ii) the total time that the ship takes to cover points
in the region (within a 25km2 box centred on [175, 262]) is approximately 12 hours and the ship
crosses near to the centre about 5 times and the actual krill density over this time may change.

With regards to the second point if the density field of a system is subject to rapid change then
maybe the estimate that follows the ship’s track would be more reliable. Otherwise, if the field is
slowly changing then estimates that take more account of geographical spread, like the MST, or
even Voronoi might be more appropriate.

Model Verification.Let us take the MST lifted using least squares coordinate weights analysis
further. The estimate from this procedure is shown in the topright of Figure 2. We examined the
residuals from the fit and discovered that the residuals wereapproximately normally distributed
(both by inspecting a histogram and through a Kolmogorov-Smirnov testp-value of 0.18) with a
standard deviation of about 11.4. The variance of the residuals appears remarkably constant over
the plane. All of this indicates a very good fit to model (1).

Comparisons.Our results directly contast those generated byloessand the MATLAB ‘triogram’
function. Both of these methods did not deal with the ‘clumpiness’ of the krill data at all well. Both
methods smoothed out some features and missed others completely. Hence, their residuals also did
not look satisfactory either. These results concur with oursimulations in section 7.2 below.

Physical Interpretation.The likelihood maximization described in Section 6.3 results in piece-
wise constant thresholds (over scale), which are derived from the piecewise constant weight esti-
matesπi arising from the monotone dependence constraints. The thresholds are plotted in Figure 5
of Jansen et al. (2008). The piecewise constant functions implicitly divide the scale space into a
number ofdata-defined resolution levels. (For those familiar with regular wavelet methods, this is
an example of level-dependent thresholding but where the resolution levels are not fixed dyadic but
arise from, and depend on, the data). The smallest thresholdvalue is approximately4.6× 10−9 for
the coarsest 345 coefficients. This means wavelet coefficients in scale ranges from 0.8km and up
are essentially not thresholded. Another way of interpreting this, familiar to wavelet shrinkage re-
searchers, is to say that 0.8km is the “primary resolution”.Finer scales than this get monotonically
higher thresholds in bands[0.71, 0.8), [0.58, 0.71), [0.09, 0.58) and less than 0.09. The thresholds
statistically indicate that these is little or no variationin the ‘true’ intensity pattern at less than 100m
and there is reduced variation at less than 600m. This information could be then cross-referenced
with individual clusters of wavelet coefficients to provideestimated information about particular
cluster groupings and locations. In summary, we obtain information in terms of the estimatebut
also information on the variation of the ‘true’ intensity via thethresholds.

Finally, the krill data distribution does not look particularly Gaussian. Figure 3 shows two more
estimates using Voronoi based lifting with and without the log transformation. In future the Haar-
Fisz transform, see Fryzlewicz and Nason (2004) or Jansen (2006) might be used.

Section 7.2 in Jansen et al. (2008) describes another example concerned with shrinkage of delays
on part of the UK rail network via tree-based lifting.

7.2. Comparisons
7.2.1. Comparing our lifting methods with themselves andloess

We carried out a large simulation study with our new methods and compared them toloess using
R (see Cleveland and Devlin (1988) for more information onloess, see R Development Core
Team (2008) for R). We evaluated these methods on 2D analogues of theBlocks, Bumps, Heavisine
andDoppler test functions introduced by Donoho and Johnstone (1994) and the piecewise linear
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Fig. 3. Krill density estimates computed using Voronoi least-squares lifting with regular
eBayesThresh. Left: estimate on raw data; Right: estimate on log transformed data.

Fig. 4. 2D analogues of Donoho and Johnstone test functions. From left to right: Doppler, Heavisine,
Blocks, Bumps and mfc(not an analogue).

functionmfc. Pictures of the test functions appear in Figure 4. Full mathematical definitions of
these functions along with comprehensive simulation results appear in Nason et al. (2004).

Every simulation run was based on estimating one of the test functions on a jittered16 × 16
grid and adding iid Gaussian noise. Varying amounts of jitter (distributed as Unif[−η, η] for η =
0.1, 0.01, 0.001, varying signal-to-noise ratios. Sensitivity to “primaryresolution” (the number of
points that get removed in the lifting transform) was also explored. We also explored the perfor-
mance of our different ways of carrying out our MLE as described in Section 6.3.

Table 1 shows a selection of results from Nason et al. (2004).One can see that for the very simple
piecewise linear functionmfc the loess procedure does very well, but the Voronoi lifting is not far
behind. For all other signals the lifting procedures do better or much better. However, note that

Table 1. Median (MAD) of 100 simulated sums of
squares error values for loess, Tree based lifting
(pictree) using coordinate information, and Voronoi
based lifting (liftvorLS). Jitter η = 0.01, SNR =

5, ng = 16
2, monotone dependence EBayesThresh,

(×1000).
Signal Loess Tree Voronoi
mfc 18 (1.6) 75 (46) 26 (4)

Doppler 130 (5.9) 35 (26) 8 (1.0)
Heavisine 530 (49) 410 (200) 72 (20)

Blocks 2300 (53) 190 (91) 160 (37)
Bumps 3000 (160) 770 (500) 210 (32)
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Table 2. Mean averaged squared errors from 50 simulations for
denoising of mfa and mfb by triogram and Voronoi lifting method.

Functionmfa Functionmfb

Method 15dB 18dB 15dB 18dB
Triograms 20.9 (0.04) 20.0 (0.04) 19.9 (0.04) 19.3 (0.04)

Voronoi 16.4 (0.02) 11.1 (0.02) 14.3 (0.03) 9.7 (0.02)

the performance for the tree based lifting is highly variable (large MAD values) this is because of
the fewer neighbours it uses in constructing neighbours. The excellent performance of the Voronoi
based lifting is seen throughout all simulations. Primary resolution does not appear to dramatically
influence performance but small differences appear, especially with the tree-based lifting. Likewise,
amongst all of the methods for carrying out MLE (all coefficients, parametric dependence, artificial
levels, parametric dependence within artificial levels, and monotone dependence) there seems to be
no clear winner. Each method seemed to do better than the others on occasion. If forced to select
one method then monotone dependence usually seemed to do well.

7.2.2. Comparing Voronoi lifting with Triograms
Hansen et al. (1998) introduced the triogram method for function estimation using piecewise linear,
bivariate splines based on an adaptively constructed triangulation (see also Koenker and Mizera
(2004) for a smoothing spline approach to triograms based onthe Delaunay triangulation). We
compare our Voronoi lifting method to Triograms using thequantreg package.

We used two test functions for this simulation study. First define the generic function:

gf(x, y, horizon) = (2x+ y)I {horizon(x, y) ≤ 0}+ (10− x)I {horizon(x, y) > 0} , (24)

whereI is the usual indicator function and then define horizons

horizonA(x, y) = 3x− y − 1 andhorizonB(x, y) = (x− 1/2)2 + (y − 1/2)2 − 1/16, (25)

and then our test functions aremfa(x, y) = gf(x, y, horizonA(x, y)) andmfb(x, y) by replacing
horizonA by horizonB.

For each simulation in this section we generated 1000(x, y) locations from a 2D uniform density
on [0, 1] × [0, 1]. We then generated noisy observations by adding Gaussian noise with two signal
to noise ratios (SNRs) of 18dB and 15dB. In each case we performed 50 simulations. The results
are shown in Table 2 and indicate the superior performance ofthe Voronoi lifting methodfor these
functions and SNRs. Further experiments show that for very low SNRs triogram methods do better.

7.2.3. Comparing Voronoi lifting with thin-plate splines and kriging.
Heaton and Silverman (2008) compared our Voronoi lifting methodology, additionally equipped
with an imputation method with both thin-plate spline and kriging methodology, and showed that
Voronoi lifting is competitive, see Section 8 for further information.

8. Conclusions and future possibilities

This article has described a variation on the lifting theme:“lifting one coefficient at a time” and
specified a new multiscale methodology for non-parametric regression in two or more dimensions.
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Three types of lifting methodology are developed: lifting with the Dirichlet tessellation using co-
ordinate information in 2D, lifting with trees and graphs using coordinate information and lifting
with graphs using inter-point distance information. With these algorithms “scale” naturally arises
as a continuous concept and various empirical Bayes methodshave been invented that make use of
the continuous scale knowledge in a consistent way. Some theoretical aspects have been discussed.
We have also demonstrated the utility of our techniques bothon the krill data (where ships track
information can optionally be used) and simulated data.

A further innovation would be to choose from amongst different types of predict and/or update
steps as each coefficient is generated. In generic lifting this is known as ‘adaptive lifting’, see Clay-
poole et al. (2003). For lifting one coefficient at a time adaptive lifting has been described in 1D
by Nunes et al. (2006) who build on Jansen et al. (2001) and preprint versions of this article by
permitting a choice of regression order (linear, quadraticor cubic) and/or number of neighbours
involved in prediction. Nunes et al. (2006) provide a full literature review of adaptive lifting and a
comprehensive simulation study, which shows that 1D adaptive lifting one coefficient at a time pro-
duces extremely good compression and nonparametric regression results when compared toLocfit
(Loader, 1997, 1999), thesmooth.spline() function in R, and the irregular wavelet shrinkage
algorithm by Kovac and Silverman (2000). Our methods can be developed further to cope with
heteroscedastic variance using ideas similar to those proposed by Kovac and Silverman (2000) as
demonstrated in 1D by Nunes et al. (2006). The techniques of Kovac and Silverman (2000) could
also be used to cope with correlated errors: essentially an estimate of the correlation structure would
be fed into the variance estimation stage as described in section 2.5.

As well as estimating true values from a noisy function (either irregularly spaced or on a net-
work) on a given set of points one might also wish to estimate the function at a new set of points.
Heaton and Silverman (2008) describe a method that imputes the value of the function at a set of
sites given information from another set of sites using the Bayesian lifting model that we present
above using the Gibbs sampler. They demonstrate their method successfully both with regular
wavelet shrinkage, and also on simulated and real data usingour 2D Voronoi lifting. For both sim-
ulated and real data their results are competitve with both kriging and thin-plate spline methods and
in one of the three cases for the rainfall data the lifting imputation method is significantly better.
More in-depth simulations and comparisons need to be performed to thoroughly expore the utility of
these methods. Other questions along these lines remain — for example, how to deal with locations
that disappear when one is modelling data structures through time.

Another important possibility would be to more accurately model the variance and correlation
between lifting coefficients, ideally in a computationallyefficient way. Such a possibility could
be incorporated into the empirical Bayes paradigm, but issues of computational efficiency would
have to be dealt with. This leads onto the possibility of defining stochastic processes on the lifting
coefficients themselves, and additionally, defining a process for the locationsti. For example,
one might envisage developing a similar kind of model to locally stationary wavelet processes as
introduced by Nason et al. (2000) using our lifting techiques.

9. Acknowledgements

The authors would like to thank (i) Cathy Goss and Inigo Everson of the British Antarctic Survey for
supplying them with the krill data, for helpful conversations, and advice concerning the purposes
of the study; (ii) Alistair Murray who initially provided uswith krill data and inspiration. The
krill study was funded by the Government of South Georgia andthe South Sandwich islands; (iii)
Roger Koenker for supplying the Matlab version of hisquantreg package; (iv) Matt Nunes for



26 Stefan Wager

translating the Voronoi lifting code from Matlab to R. GPN was partially supported by EPSRC
Advanced Research Fellowship AF/001664 and GR/D005221/1.All authors were supported by
EPSRC Research Grant M10229. Three R packages (NetTree, Liftvor andPicTree) that
carry out the three different kinds of lifting described in this paper are available from Nason. The
(original) version ofLiftVor coded in Matlab is available from Jansen.

References

Abramovich, F., Sapatinas, T., and Silverman, B. W. (1998) Wavelet thresholding via a Bayesian
approach,J. R. Statist. Soc.B, 60, 725–749.

Abramovich, F., Bailey, T., and Sapatinas, T. (2000) Wavelet analysis and its statistical applications,
Statistician, 49, 1–29.

Allard, D. and Fraley, C. (1997) Nonparametric maximum likelihood estimation of features in spa-
tial point processes using Voronoi tessellation,J. Am. Statist. Ass., 92, 1485–1493.

Antoniadis, A. and Fan, J. (2001) Regularization of waveletapproximations,J. Am. Statist. Ass., 96,
939–967.

Antoniadis, A., Gregoire, G., and Vial, P. (1997) Random design wavelet curve smoothing,Stat.
Prob. Lett., 35, 225–232.
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