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Abstract

The optimization of an information criterion in a variable selection procedure leads to an addi-

tional bias, which can be substantial in sparse, high-dimensional data. The bias can be compensated

by applying shrinkage while estimating within the selected models. This paper presents modified

information criteria for use in variable selection and estimation without shrinkage. The analysis

motivating the modified criteria follows two routes. The first, explored for signal-plus-noise obser-

vations only, goes by comparison of estimators with and without shrinkage. The second, discussed

for general regression models, describes the optimization or selection bias as a double-sided effect,

named a mirror effect in the paper: among the numerous insignificant variables, those with large,

noisy values present themselves as being more valuable than an arbitrary variable, while in fact, they

carry more noise than an arbitrary variable. The mirror effect is developed for Akaike’s Information

Criterion and for Mallows’ Cp, with special attention to the latter criterion as a stopping rule in a

least angle regression routine. The result is a new stopping rule, not focusing on the quality of a lasso

shrinkage selection, but on the least squares estimator without shrinkage within the same selection.
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1 Introduction

This paper presents information criteria for estimators without shrinkage in model selection. Although

Mallows’ Cp (Mallows, 1973) criterion is an unbiased estimator of the expected average squared pre-

diction error of a model, it is an often reported fact (Woodroofe, 1982; Ishwaran, 2004; Loubes and

Massart, 2004; Stine, 2004; Ye, 1998) that minimization of the criterion overestimates the number of

variables needed to minimize the prediction error. Given an estimator within a selected model, Mallows’

Cp, like many other information criteria, has the form of a penalized likelihood or sum of squared residu-

als. When the penalty depends on the model size, then among all models of equal size, selection is based

on the sum of squared residuals. In the case of high-dimensional sparse models, it is easy to reduce the

sum of squared residuals by a well-chosen combination of falsely significant variables, thereby fitting

the observational errors. The false positives thus present themselves as being better in modelling the
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observations than variables that were selected in a purely arbitrary way, whereas in reality their estimates

deviate more from their values in the true model than do those for arbitrary variables. This two-sided

effect of appearance versus reality can be described as a mirror effect, and is the topic of this paper.

The mirror effect can be seen as statistics of residuals that change through the optimization of an

information criterion in variable selection. The outcome of the optimization depends on the errors, while

an information criterion has been designed to evaluate the quality of one specific model. The change of

statistics through the selection can be compensated for by a generalized concept of degrees of freedom

(Ye, 1998), replacing the simple model size in the penalty. The mirror effect described in this paper is

closely related to that concept.

The paper provides data-dependent expressions for penalties in information criteria that correct a pri-

ori for the mirror effect. In principle the mirror effect paradigm can be adopted with any distribution for

the error, any set or search structure for the model selection problem, any information criterion and any

estimator within the selected model. As the mathematical details depends on the case, most of the discus-

sion in the paper concentrates on important examples, such as normal errors and least squares estimators.

This paper discusses the application for both Mallows’ Cp and Akaike’s Information Criterion (Akaike,

1973). In the case of normal errors and Mallows’ Cp, the resulting penalty term can be compared to a

lower bound that avoids inconsistent estimators (Birgé and Massart, 2007). The mirror correction, being

data-dependent, automatically finds the degree of sparsity in the given data. The simulation study in

Section 2.6 illustrates that in terms of prediction error, the mirror correction slightly outperforms meth-

ods that control the false discovery rate (Benjamini and Hochberg, 1995) or even the absolute number

of false positives (Donoho and Johnstone, 1994). These methods have been found to perform well in a

minimax sense (Donoho and Johnstone, 1999) with respect to the prediction error, but the focus on false

positives leads to estimators that are not adaptive to the true, significant components in the data.

The mirror correction proposed by this paper can also be seen as an alternative for shrinkage as a tool

to compensate for optimization randomness. The idea behind shrinkage is to temper the effect of false

positives. The tempering may even exactly undo the optimization bias. This occurs when the errors are

normally distributed and the shrinkage is realized through ℓ1 constrained regression, known as the lasso

or least absolute shrinkage and selection operator (Tibshirani, 1996) or basis pursuit (Chen et al., 1998).

Thanks to the shrinkage, the expression for Mallows’ Cp in the optimization of the model uses the same

penalty as for evaluation of an estimator without shrinkage in a fixed model. This penalty is based on the

concept of generalized degrees of freedom (Ye, 1998). Both in low-dimensional (Zou et al., 2007) and

in high-dimensional (Tibshirani and Taylor, 2012) data, the number of degrees of freedom during a lasso

operation can be taken equal to model size. In the case of a signal-plus-noise model, the expression of

Mallows’ Cp thus reduces to that of Stein’s unbiased risk estimator (Stein, 1981; Donoho and Johnstone,

1995; Loubes and Massart, 2004), while lasso itself becomes soft-thresholding.

Firstly, shrinkage thus reduces the effect of false positives. Secondly, it may also be superior to

simple least squares in terms of prediction error, thanks to Stein’s phenomenon (Stein, 1956). Thirdly, ℓ1
regularized least squares is a convex optimization problem, as are variants such as the Dantzig selector

(Candès and Tao, 2007). Without shrinkage, variable selection is a combinatorial optimization problem.

Fourthly, for a given penalty value, ℓ1 regularization imposes nearly the same degree of sparsity as an

estimator penalized by the model size, without further shrinkage (Donoho, 2006). It has also been proved

that, under certain conditions, ℓ1 constrained optimization is variable selection consistent, provided that

the true model variables are large enough, compared to the regularization parameter. That is, if all

variables in the true model are sufficiently significant and if the regularization parameter is not too high,
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then, for n → ∞, the set of nonzero variables in the selection equals the true set with probability tending

to one (Meinshausen and Bühlmann, 2006; Wainwright, 2009; Tropp, 2006; Zhao and Yu, 2006). Fifthly,

as illustrated in Figure 1(b), when using shrinkage, the curvature of the prediction error as a function of

model size is small near its minimum. This is in contrast to the delicate minimization of the prediction

error in absence of shrinkage. Sixthly, shrinkage provides a continuous transition between selection and

non-selection. Continuous operations are mathematically more tractable.

In spite of these benefits, the use of shrinkage may be problematic in high-dimensional problems.

First, it introduces a bias in the estimated parameters, even if the parameter is highly significant. This

can be controlled by choosing shrinkage rules that spare large variables (Gao, 1998), including Bayesian

shrinkage (Johnstone and Silverman, 2004). Secondly, as shrinkage reduces the effect of false positives,

it is tolerant to their presence. As a result, the shrinkage rule that minimizes the prediction error, rests on

a model with too many nonzeros. The minimum with small curvature in Figure 1(b) confirms the illusion

of an easy problem, whereas finding the best selection without shrinkage requires careful optimization.

While ℓ1 regularization mimics estimation without shrinkage quite well for fixed penalty values, the

equivalence between ℓ1 and estimation without shrinkage no longer holds for the optimization over the

penalty, or, equivalently, the optimization over the model size. The rather poor behavior of shrinkage

selection with data-driven choice of the penalty value explains why many state-of-the-art methods do not

optimize over the regularization, but rather opt for a minimax choice of it.

2 Mirror effect in variable selection without shrinkage

2.1 Optimization bias

This paper investigates the selection of variables βi in a regression model

Y = µ+ ε = Kβ + ε = Kβ + σZ, (1)

where Z is a n-dimensional vector of standardized, independent and identically distributed errors with

var(Zi) = 1, for i = 1, . . . , n. The design matrix K has thus n rows. The number of columns, m, may

or may not be equal to n. In high-dimensional data, we typically find m ≫ n, but we assume that the

number of significant variables, n1, is always smaller than n.

Let β̂ be an estimator of β in model (1) where n1 variables are allowed to be nonzero, and denote

µ̂ = Kβ̂. The objective is to find the value of n1 and the corresponding estimator β̂ with n1 nonzeros

that minimizes the expected prediction error

PE(x) =
1

n
E
(
‖Kβ −Kβ̂‖2

)
. (2)

The binary selection vector x ∈ {0, 1}m represents the model under consideration. Let Kx be the

submatrix of K containing the columns corresponding to the 1’s in x. For any linear estimator µ̂ = AxY

within a given, deterministic model x, the prediction error is estimated unbiasedly by Mallows’ Cp,

which is in general ∆p(Ax) = n−1SSE(β̂)+2σ2n−1tr(Ax)−σ2, where SSE(β̂) = ‖Y −Kβ̂‖2 is the

sum of squared residuals. We use the symbol ∆p because in most papers Cp stands for a standardized

or studentized quantity. This paper concentrates on the least squares estimator β̂x = (KT
xKx)

−1KT
xY ,

where βx denotes the subvector with the nonzero entries of β corresponding to the nonzeros in x. Using
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the orthogonality Kβ̂ = Kxβ̂x ⊥ (Y −Kβ̂) it follows that E{∆p(x)} = n−1(‖Kβ‖22−E(‖Kβ̂‖22)+
2n1σ

2). The only expectation in the expression for E{∆p(x)} can be rewritten as

E(‖Kβ̂‖22) = E(‖PxKβ + Pxε‖
2
2), (3)

where Px = Kx(K
T
xKx)

−1KT
x is the orthogonal projection onto the columns of Kx.

In the case where the selection X depends on the observations, through optimization of ∆p(x), (3)

becomes

E(‖Kβ̂‖22) = E(‖PXKβ‖22) + E(‖PXε‖22) + 2E
{
(PXKβ)T (PXε)

}

= E(‖PXKβ‖22) + E(‖PXε‖22) + 2(Kβ)TE(PXε).

This leads to an expected value of Mallows’ criterion, taking the optimization into account,

EX{∆p(X)} =
1

n

{
‖Kβ‖22 − E(‖PXKβ‖22)− E(‖PXε‖22)− 2(Kβ)TE(PXε) + 2n1σ

2
}
. (4)

The expected prediction error, on the other hand, can be written as PE(x) = n−1{‖Kβ‖22 +

E(‖Kβ̂‖22) − 2(Kβ)TE(Kβ̂)}. For fixed x, the expressions of PE(x) and E{∆p(x)} lead to iden-

tical outcomes. For observation dependent selections X ,

EX{PE(X)} =
1

n

{
‖Kβ‖22 + E(‖PXKβ‖22) + E(‖PXε‖22)− 2(Kβ)TE(PXKβ)

}

=
1

n

{
‖Kβ‖22 − E(‖PXKβ‖22) + E(‖PXε‖22)

}
. (5)

The difference between (4) and (5) is due to the observation-dependent selection process, which is

assumed to proceed in two steps. First, for a given model size n1, the optimal n1 term selection Xn1

is computed, where the optimization takes place over the observed values of the ∆p(X) or of any other

information criterion. Next, the prediction error of the best n1 term approximation is considered as

function of n1.

The analysis of EX{PE(X)}−EX{∆p(X)} is simplified by assuming that 2n−1(Kβ)TE(PXε) =
o(n1n

−1). In the signal-plus-noise case, for instance, this follows from a symmetric random model on

β, or from the sparsity in Assumption 2. This leads to an expression for the difference between (5) and

(4), depending on n1 only, EX{PE(Xn1)} − EX{∆p(Xn1)} ≈ 2m(n1), where

m(n1) =
1

n
E(‖PXε‖22)−

n1

n
σ2. (6)

As X can be observed, the selection bias can be estimated unbiasedly from

m̂(n1) =
1

n
E
(
‖PXε‖22 | X

)
−

n1

n
σ2. (7)

The prediction error can then be estimated from ∆̂p(Xn1) = ∆p(Xn1) + 2m̂(n1).
This paper further analyzes the bias correction 2m(n1), describing it in terms of an oracular variable

selection, defined as follows.
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Definition 1 Given the model (1), define the class of submodels M ⊆ {0, 1}m, using the binary repre-

sentation introduced above. For each submodel x ∈ M, consider the least squares estimator β̂x within

that model.

Then the oracle selection is the model xo
n1

that minimizes limσ→0 PE(x) among all models in M
with size n1. In other words, it is the output from a model selection and estimation that has Kβ as input,

rather than Y = Kβ + ε.

Given n1 and the oracle selection xo
n1

, its least squares prediction error PE(xo
n1
) is the mirror

function.

The mirror function is thus the prediction error of a routine whose model selection is based on the

oracular observations Kβ, whereas its estimator within the selected model is based on the observations

Y = Kβ+ε. As the selection xo
n1

does not depend on ε, E{∆p(x
o
n1
)} = PE(xo

n1
). The use of the term

mirror function is motivated by the following argument. Again under the mild assumptions of sparsity,

stated in Section 2.3, it holds that EX{PE(Xn1)}−PE(xo
n1
) ≈ m(n1) ≈ PE(xo

n1
)−EX{∆p(Xn1)}.

The oracle prediction error thus acts as the mirror that reflects ∆p(Xn1) onto PE(Xn1) and vice versa.

2.2 The mirror and other penalties

Defining the residual vector e = Y −Kβ̂ and the generalized degrees of freedom (Ye, 1998) ν(n1) =
E{εT (ε − e)}σ−2, it is well known that Λp(Xn1) = SSE(β̂) + 2ν(n1)σ

2n−1 − σ2 is an unbiased

estimator of EX{PE(Xn1)}, for any choice of Xn1 , random or fixed. The approximation proposed in

Section 2.1, (6), can thus be written as ν(n1) = E(‖PXε‖22)σ
−2 + o(n1) and, consequently, m(n1) =

{ν(n1)− n1}n
−1σ2 + o(n1n

−1).
The mirror corrected penalty can be compared to the minimum penalty for consistent estimators

(Birgé and Massart, 2007). Being a lower bound, that penalty is not data-specific, unlike that proposed in

this paper. The same remark holds for the penalties proposed in Abramovich et al. (2007), for instance.

Simulations discussed in the Supplementary Material show that the mirror penalty detects the degree

of sparsity automatically. It can be shown that for n1 larger than that degree, the mirror penalty ν(n1)
increases faster than the lower bound of Birgé and Massart (2007). Unlike that lower bound, however,

the mirror paradigm is not limited to normal errors or to Mallows’ Cp criterion. See the Supplementary

Material for a full discussion.

2.3 Signal-plus-noise, using a random model for β

We start the study of (6) in a simple signal-plus-noise model Y = β + ε, where the sparse signal β

is observed directly, and m = n. Extension to the general form of (1) follows in Section 4. The least

squares estimator for given x is β̂i = Yi xi, where xi is a component of the selection vector x. The best

n1 term selection, measured by the Cp-value, consists of the n1 largest elements from Y .

The study is facilitated by assuming that the sparse vector of parameters β constitute an n-tuple of

independent realizations from a random variable βn with a density function fβn(v). The subscript n
denotes dependence on n, which will allow us to impose increasing sparsity in an asymptotic analysis.

The eventual outcome will be independent of the precise form of fβn(v).
In the signal-plus-noise model Yn = βn + ε, the error distribution is assumed to be independent

from n with variance σ2 = E(ε2).
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We let Xn1 denote the active subset of the index set {1, . . . , n}, corresponding to the ones in the

binary vector Xn1 . The functions ∆p(Xn1) and PE(Xn1) will be used to denote ∆p(Xn1) and PE(Xn1).
We let X ′

n1
denote the complement of Xn1 in {1, . . . , n}. The set X ′

n1
contains the indices of the variables

with the n0 = n − n1 smallest magnitudes. Defining the event Sn,n0 = { In a set of n independent,

identically distributed realizations, the observed |Yn| is among the n0 smallest magnitudes}, we have

P (Sn,n0) = n0n
−1. Symmetry in the random model for βn then allows us to state that E{∆p(Xn1)} =

n0n
−1E(Y 2

n | Sn,n0) + 2n1n
−1σ2 − σ2. We also define the oracular version of the event Sn,n0 as

On,n0 = { In a set of n independent, identically distributed realizations, the observed |βn| is among the

n0 smallest magnitudes}. The complement of On,n0 corresponds to the selection xo
n1

in Definition 1. Let

X o
n1

be the set of indices i for which xon1,i
= 1. Starting from E(Y 2

n | On,n0) = σ2 + E(β2
n | On,n0) it

follows that E{∆p(X
o
n1
)} = n0n

−1E(Y 2
n | On,n0)+2n1n

−1σ2−σ2 = n1n
−1σ2+n0n

−1E(β2
n | On,n0)

and thus E{∆p(X
o
n1
)} − E{∆p(Xn1)} = n0n

−1{σ2 + E(β2
n | On,n0) − E(Y 2

n | Sn,n0)}. A mirrored

relation holds between the prediction errors. In order to check this, we start from a conditioning of the

prediction error on On,n0 to find that PE(X o
n1
) = n1n

−1σ2 + n0n
−1E(β2

n | On,n0), in line with the

unbiasedness of ∆p(X
o
n1
). The prediction error can be written as

PE(Xn1) = PE(Xn1 | Sn,n0)P (Sn,n0) + PE(Xn1 | S′
n,n0

)P (S′
n,n0

)

= E(β2
n | Sn,n0)

n0

n
+ E(ε2 | S′

n,n0
)
n1

n
=

n0

n
E(β2

n | Sn,n0) + σ2 −
n0

n
E(ε2 | Sn,n0)

=
n1

n
σ2 +

n0

n

{
σ2 −E(ε2 | Sn,n0) + E(β2

n | Sn,n0)
}
. (8)

We now impose that the vector of βn is sparse enough to allow an asymptotically perfect separation

between significant and error-dominated variables:

Assumption 1 When n → ∞, the prediction error of an oracular component selection is dominated

by the error present in the observations of the selected variables, that is PE(X o
n1
) = E{∆p(X

o
n1
)} ∼

n1n
−1σ2.

An implication of Assumption 1 follows from the above stated expression of PE(X o
n1
). We find n1n

−1σ2+
n0n

−1E(β2
n | On,n0) ∼ n1n

−1σ2, which becomes E(β2
n | On,n0) = o(n1n

−1).
The following assumption is about the performance of the non-oracular selection method.

Assumption 2 The selection Sn,n0 performs asymptotically as well as On,n0 , in the sense that E(β2
n |

Sn,n0) = o(n1n
−1). as n → ∞.

In terms of a non-random model for βn, this means that the threshold λn1 selecting n1 significant vari-

ables satisfies n−1
∑n

i=1 β
2
i P (|Yi| < λ) = o(n1n

−1). The Supplementary Material includes a quanti-

tative discussion of the interpretation of Assumption 2 in function spaces imposing sparsity, such as ℓp
balls with p < 2 or multiscale sparsity, such as Besov spaces. The discussion involves the introduction of

an index of sparsity, inspired by the g-index from bibliometry (Egghe, 2006). Assumption 2 is satisfied

if the data vector βn is sparse, if the noise is not heavy tailed, so that it can be easily separated from the

data, and if the threshold or model size is near its optimal value.

Assumption 2 implies that

0 ≤ E(Y 2
n | Sn,n0)− E(ε2 | Sn,n0) = o

(n1

n

)
. (9)
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This follows from the equation E(Y 2
n | Sn,n0) − E(ε2 | Sn,n0) = E(β2

n | Sn,n0) + 2E(εβn | Sn,n0),
and the fact that E(εβn | Sn,n0) < 0.

Assumptions 1 and 2 allow us to conclude that approximating PE(Xn1) as the reflection of E{∆p(Xn1}
with respect to the oracular mirror E{∆p(X

o
n1
)} = PE(X o

n1
) does not disturb the optimization of the

prediction error. More precisely, introduce the approximation errors ∆1,n and ∆2,n by

E{∆p(X
o
n1
)} − E{∆p(Xn1)} =

n0

n

{
σ2 − E(ε2 | Sn,n0)

}
+∆1,n,

PE(Xn1)− PE(X o
n1
) =

n0

n

{
σ2 − E(ε2 | Sn,n0)

}
+∆2,n.

Then limn→∞ qn(n1) = 0, where qn(n1) = ∆n/PE(Xn1) and ∆n = ∆1,n+∆2,n. Defining PE∆(Xn1) =
PE(Xn1) −∆n, we have, for n → ∞ and any n1, that −qn(n1)PE(Xn1) ≤ PE∆(Xn1)− PE(Xn1) ≤
qn(n1)PE(Xn1), or, equivalently, PE(Xn1){1 − qn(n1)} ≤ PE∆(Xn1) ≤ PE(Xn1){1 + qn(n1)}. So,

if n̂1 and ñ1 optimize PE(Xn1) and PE∆(Xn1) respectively, then

{
1− qn(ñ1)

}
PE(Xñ1

) ≤ PE∆(Xñ1
) ≤ PE∆(Xn̂1

) ≤
{
1 + qn(n̂1)

}
PE(Xn̂1

)

or

1 ≤
PE(Xñ1

)

PE(Xn̂1
)
≤

1 + qn(n̂1)

1− qn(ñ1)
. (10)

Thus the minimizers of the exact and approximate prediction errors have asymptotically the same ef-

ficiency with respect to the prediction error. The approximate prediction error in its turn is estimated

unbiasedly by ∆̃p(Xn1) = ∆p(Xn1) + 2m(n1), with

m(n1) =
n0

n

{
σ2 − E(ε2 | Sn,n0)

}
= P (Sn,n0)

{
σ2 − E(ε2 | Sn,n0)

}
(11)

=

∫ ∞

−∞
fβn(v)

∫ ∞

−∞
(σ2 − e2)fε(e)P (Sn,n0 | Yn = v + e) de dv.

The mirror (11) and the corresponding double correction are illustrated in Figure 1(a), which depicts

the apparent information for a given model size n1, found by minimizing Mallows’ Cp, along with the

minimum prediction error for that model size. The contradiction between better-than-average appearance

and worse-than-average reality is seen in the two curves being reflections of each other with respect to

the oracular curve. The Cp curve has a minimum with small curvature, creating the illusion of an easy

problem. The model selected using this curve is however far too large.

2.4 The mirror effect in terms of thresholds

In this section we seek approximations to the mirror effect that satisfy three conditions. Firstly, the

error of approximation is small compared to the prediction error, in the sense that, asymptotically, it

does not disturb optimization of the estimated prediction error curve. Secondly, the expression is easy to

implement. Thirdly, for normal errors, it reduces to an expression that can be derived as a hard threshold

correction of Stein’s unbiased risk estimator. This correction is further discussed in Section 3.

We define the expected mirror contribution for a given component value v as

t(n1, v) =

∫ ∞

−∞
(σ2 − e2)fε(e)P (Sn,n0 | Y = v + e) de. (12)
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The expected mirror in the model is then

m(n1) =

∫ ∞

−∞
fβn(v)t(n1, v) dv.

In a similar way, we can write the contribution of one component to the expected prediction error, given

its value v, as

r(n1, v) = v2 P (Sn,n0 | βn = v) + E(ε2 | S′
n,n0

)P (S′
n,n0

| βn = v). (13)

The following lemma, proved in Appendix A, states that the expected mirror can be approximated

by assuming for each individual component that its error-free value is zero. The approximation error,

relative to the prediction error, tends to zero.

Lemma 1 Suppose that we observe n independent samples from Yn = βn + ε, with βn and ε inde-

pendent. Further assume that the distributions of ε and βn are symmetric around the origin, and that

ε has a unimodal distribution and a quantile function satisfying Qε(1) = ∞. We impose the following

conditions:

1. the density fε(e) has a bounded second derivative;

2. the density fε(e) shows exponential decay as |e| → ∞;

3. the large values of βn dominate the errors. More precisely, the decay of fε(e) is essentially faster

than that of fYn(e) in the sense that

lim
e→±∞

log fε(e)

log fYn(e)
= ∞;

4. The large values of βn are sparse, in the sense that there exists a positive p∗ so that for any positive

δ one can find an integer n∗ for which P (|βn| < δ) ≥ p∗, for any integer n ≥ n∗.

Further assume that n1/n → 0 as n → ∞. Then the function t(n1, v) defined in (12) satisfies

lim
n→∞

t(n1, βn)− t(n1, 0)

r(n1, βn)
= 0, (14)

for any sequence βn. Hence

lim
n→∞

m(n1)− t(n1, 0)

r(n1, βn)
= 0.

We can thus use t(n1, 0) use as an approximate mirror.

In a final step we further approximate the mirror by replacing the P (Sn,n0 | Yn = e) by a binary

function I(|u| < λn1), with an appropriate threshold λn1 .

Lemma 2 Defining the threshold λn1 = Q|Yn|(n0n
−1), where Q|Yn| is the quantile function of |Yn|, and

τ(λn1) =

∫ λn1

−λn1

(σ2 − e2)fε(e)de, (15)

then, if n0/n → 1 for n → ∞, and if the error-free data are sparse and dominant in the sense of Lemma

1, limn→∞ {m(n1)− τ(λn1)} /r(n1, βn) = 0.
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The proof is in Appendix A.

An argument similar to that in (10) ensures that replacing n0n
−1
{
σ2 − E(ε2 | Sn,n0)

}
with its ap-

proximation does not disturb the minimization of E{∆p(Xn1)}. Referring to the discussion of (11), the

mirror correction can thus safely be approximated as PE(Xn1)− E{∆p(Xn1)} ∼ 2τ(λn1).
This expression does not depend on a model for βn, except through the threshold λn1 . This threshold

can, however, be easily replaced by the empirical value λ̂n1 = |Y |(n−n1:n), where |Y |(n−n1:n) stands for

the (n− n1)th order statistic in an n-vector Y .

If ε ∼ N(0, σ2), then the correction reduces to

PE(Xn1)− E{∆p(Xn1)} ∼ 4σ2 λn1φσ(λn1), n → ∞, (16)

where φσ(e) is the density of zero mean normal random variable with variance σ2.

2.5 Illustration of the mirror effect

The simulation in Figure 1 illustrates the discussions of the preceding sections. It was set up as fol-

lows. A vector of n = 2000 sparse data β was generated according to the zero inflated Laplace model

fβ|β 6=0(v) = (a/2) exp(−a|β|), where, in this simulation, a = 1/5 and P (β 6= 0) = 1/20. The obser-

vations are Y = β + ε, where ε is a vector of independent, standard normal errors. For this model, the

figure depicts the curve of ∆p(Xn1) as a function of n1. As defined in Section 2.1, Xn1 is the n1 term

selection that minimizes ∆p(X). For the same selection, Figure 1(a) also plots PE(Xn1). The same

plot contains the mirror curve PE(xo
n1
), defined in Definition 1. Finally, Figure 1(b) contains the curve

of ∆p(Xn1) when using soft-threshold shrinkage within the models Xn1 .

2.6 A comparative simulation study in the signal-plus-noise model

The simulation study, summarized in Table 1, compares the efficiency of several methods for sparse

variable selection with respect to the oracular prediction error, that is, Eff = PE(oracle)/PE. The

oracle would select all variables with error-free value above the noise standard deviation σ. The data

were generated as in Johnstone and Silverman (2004), except for the sample size, which was taken

to be n = 10, 000 instead of n = 1000. One hundred replications of a n-vector of observations Y

were generated, where Y = β + ε. The error vector ε is independent, homoscedastic, and normally

distributed, whereas the error-free data β are set to zero, except for a proportion p of the variables,

whose values are µ0. The sparsity parameter p equals p = 0.005, while µ0 = 7. The table confirms

the relatively low efficiencies, reported in Johnstone and Silverman (2004), of soft threshold methods

using thresholds that estimate the minimum prediction error. The poor performance is entirely due to

the oversmoothing of soft-thresholding. Indeed, hard thresholding focussing on the false discovery rate

(Benjamini and Hochberg, 1995) or using empirical Bayes posterior median thresholds (Johnstone and

Silverman, 2004) is outperformed by hard thresholding minimizing generalized cross validation, which

estimates the prediction error. Indeed, its observed median efficiency is higher, as is its 95% quantile. The

lower 5% efficiencies are, however, slightly less favorable for generalized cross validation than for the

false discovery rate and empirical Bayes methods. Closer inspection of the simulation study, not shown

in this table, reveals that this is due to imperfect estimation of the prediction error using generalized cross

validation. These imperfections are a drawback for any method that estimates the the prediction error in

a direct, data-adaptive way, rather than relying on minimax results (Donoho and Johnstone, 1994, 1999).
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Figure 1: Mallows’s Cp in sparse variable selection with and without shrinkage. (a) Mirror effect, defined

in (11). The dashed line depicts Mallows’s Cp for the selections Xn1 that minimize ∆p(X ), given model

sizes n1. The dash-dot line represents the prediction errors PE(Xn1) for the same selections. The curves

of Mallows’s Cp and the prediction errors are reflections of each other with respect to the oracular curve

PE(X o
n1
), depicted as a solid line. That mirror curve is the prediction error for a selection based on the

error-free values. (b) Prediction errors for hard- and soft-thresholding, black and grey lines respectively.

The hard threshold curve is the same as the dash-dot line in (a).

The table also illustrates that generalized cross validation is a more robust estimator of the prediction

error than is Stein’s unbiased risk estimator.

3 Undoing soft threshold bias

3.1 Soft-thresholding and Stein’s unbiased risk estimator

This section shows that, for the case of normal errors, the correction term for Mallows’ Cp in (16) can be

obtained from an analysis that imports the difference between soft- and hard-threshold prediction errors

into the expression of Stein’s unbiased risk estimator.

Given a threshold value λ, the difference in prediction errors between soft- and hard-thresholding

equals

PE(β̂H
λ )− PE(β̂S

λ) = −
λ2

n

n∑

i=1

P (|Yi| > λ) +
2λ

n

n∑

i=1

E(εiX
+
i )−

2λ

n

n∑

i=1

E(εiX
−
i )

= −
λ2

n

n∑

i=1

P (Xi = 1) +
2λ

n

n∑

i=1

E {sign(βi + ε) εXi} , (17)

where X+ = I(Y > λ) and X− = I(Y < −λ). The first term of (17) can be estimated unbiasedly

by −λ2n−1
∑n

i=1Xi = −λ2N1n
−1, where N1 is the total number of observed magnitudes above the

threshold.
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5% 50% 95%

SURE-soft 9.1 12.8 17.8

GCV-soft 8.5 12.9 17.9

EBayesthresh 36.4 58.9 88.9

FDR-thresh 35.0 58.8 100.0

SURE-hard 27.4 48.1 92.6

GCV-hard 34.4 73.4 100.0

Table 1: Quantiles of observed efficiencies in percentages for several threshold methods: SURE stands

for Stein’s unbiased risk estimation, GCV for generalized cross validation, FDR for false discovery rate;

soft and hard stand for soft- and hard-thresholding.

The second term (17) cannot be estimated in an unbiased way. It can, however, be approximated

by a constant, dependent on the threshold value, but not on β. As follows from Proposition 1, the

approximation error tends to zero more rapidly than the prediction error itself, so it does not disturb the

maximization of the prediction error or of any estimate of it.

Proposition 1 Let ε be symmetrically distributed with an exponentially decaying density function fε(e)
for which lime→±∞ f ′

ε(e) exists, and let

κ(λ,β) =
1

n

n∑

i=1

E {sign(βi + ε)I(|βi + ε| > λ)ε} . (18)

Then there exists a function c(λ) such that for any parameter vector β

λ
|κ(λ,β) − κ(λ, 0)|

PE(β̂H
λ )

≤ c(λ), with lim
λ→∞

c(λ) = 0. (19)

The proof is established in the Supplementary Material; see also Section 4.3.

An argument similar to that in (10) allows us to replace κ(λ,β) by κ(λ,0) = E {|ε| I(|ε| > λ)}
while keeping the quality of the minimization of PE(β̂H

λ ).
In the case of soft thresholding, the well known (Stein, 1981; Donoho and Johnstone, 1995) expres-

sion for unbiased risk estimation for data with normally distributed errors is SURE(β̂λ) = n−1SSE(β̂λ)+
2N1n

−1σ2 − σ2. A quasi unbiased estimator for the hard thresholding prediction error can be obtained

by adding the estimator −λ2N1n
−1 + 2κ(λ, 0) for the terms of (17) to Stein’s unbiased risk estimator.

It is straightforward to verify that SSE(β̂λST
) = SSE(β̂λHT

) + λ2N1n
−1. Moreover, for normal errors

ε ∼ N(0, σ2), we have that E(εX+; 0) = σ2λφσ(λ) = σ2(λ/σ)φ1(λ/σ), leading to

SUREH(β̂λHT
) = SSE(β̂λHT

) +
2N1

n
σ2 − σ2 + 4σ2λφσ(λ). (20)

This is the same expression as (16), which followed from a different strategy and different approxima-

tions. The strategy in Sections 2.3 and 2.4 was first to quantify the mirror effect and then to approximate
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it using a threshold expression, leading to (16). The current section has started from the observation that

soft-threshold shrinkage perfectly compensates for the mirror effect in the case of normal errors. From

there, approximating the difference between soft- and hard-thresholding has led to (20).

The expression can be further expanded towards generalized cross validation for hard thresholding.

3.2 Akaike’s information criterion

For a given selection x, Akaike’s information criterion can be defined as AIC(x) = 2 logL(x) −
2n1n

−1, where L(x) is the maximum likelihood value within selection x. This criterion is an asymp-

totically unbiased estimator for the Kullback–Leibler distance between a given model and the true ob-

servational distribution. When the criterion is used for optimization, the mirror correction in the case of

signal-plus-noise observations can be found with similar arguments as for Mallows’ criterion to be

AICm(n1) = −
n0

n
− log(2πσ̂2)− 2

n1

n

σ2

σ2
λ

− 2
ñ0

n

(
σ2

σ2
λ

− 1

)
, (21)

where, for λ = λn1 as defined in Lemma 2, σ2
λ = E(ε2| − λn1 < Yn < λn1) and ñ0 = nP (|ε| < λn1).

The variance estimator σ̂2 = n−1
0

∑n
i=1(Yi − β̂i)

2 is based on squared residuals within the model under

consideration, while the variance σ2 itself, in practice, is estimated in a way independent from the model,

or at least in a robust way, such as using the median absolute deviation. An alternative variance estimator,

based on generalized cross validation, is reported to be more robust, leading to better estimates of the

Kullback–Leibler distance.

For normal observations, the criterion reduces to

AICm(n1) = −
n0

n
− log(2πσ̂2)− 2

ñ0

n

{
n1/n+ 2λn1φσ(λn1)

ñ0/n− 2λn1φσ(λn1)

}
. (22)

The mirror effect in Akaike’s criterion is discussed in the Supplementary Material.

4 The mirror effect in sparse regression models

4.1 The mirror effect on covariance matrices

For the development of (7) for the mirror estimator in the general regression model (1), we define η =
KTε with covariance matrix Ση = KTKσ2. Then E

(
‖PXε‖22 | X

)
= σ2E(ηT

XΣ−1
η,XXηX | X),

where Ση,XX is the submatrix of Ση with the rows and columns corresponding to the 1’s in X . In a

similar way, submatrices are defined for the 1’s in the complementary binary vector X ′ = 1−X .

Writing

E(ηT
XΣ−1

η,XXηX | X=x)= tr(Σ−1
η,xxΣη|X=x,xx) + E(ηT

x | X=x)Σ−1
η,xxE(ηx | X=x),

the second term is zero if we again consider a symmetric, random model for β, so that the selection event

{X = x} preserves the symmetry in the error distribution. The remainder of this section concentrates

on the first term, which is the trace of a product of two matrices. The first, Σ−1
η,xx, is an inverse submatrix

of the unconditional covariance matrix. The second matrix has the same rows and columns, indicated by

x, but this time taken from the matrix of conditional covariances for the selection event.

12



The distribution of a fully unconditional quadratic form ηT
xΣ

−1
η,xxηx could be found or simulated. In

case of normal observations, for instance, it would have a generalized central chi squared distribution.

The selection event {X = x}, however, carries information about the variables in ηx, which is not trivial

to formally express.

The selection is decomposed as the intersection of two events {X = x} = X1 ∩ X0, where X1 is

the event that the variables with label xi = 1 satisfy the selection criterion, and X0 is the event that the

variables with label xi = 0 do not meet the criterion. This decomposition allows to write that Ση|X,xx =
cov(ηx | X) = cov{(ηx | X0) | X1}. As the event X0 operates on ηx′ , the inner conditioning is further

decomposed into cov(ηx | X0) = cov{E(ηx | ηx′) | X0}+ E{cov(ηx | ηx′) | X0}.
Summarizing the results so far, this section has decomposed the mirror effect into a sequence of

conditionings. Under the assumption of symmetry in the vector β, the decomposition has led to

m̂(n1) =
1

n
σ2tr

(
Σ−1
η,xx[cov{E(ηx | ηx′ ,X0,X1)}+ E{cov(ηx | ηx′ ,X0,X1)}]

)
−

n1

n
σ2. (23)

The conditionings on the events X0 and X1 must be made concrete successively and taking into account

the precise selection procedure. First, the conditional random vector ηx′ | X0 is considered. From this

follow the expected values and covariances for the vectors cov(ηx | ηx′ ,X0) and E(ηx | ηx′ ,X0),
which are functions of the ηx′ | X0. Then the information provided by X1 is incorporated. Section

4.2 develops the expressions for the case of selection by least angle regression and normally distributed

errors.

Normality leads to Ση|X0,xx = Ση,xx′Σ−1
η,x′x′cov(ηx′ | X0)Σ

−1
η,x′x′ΣT

η,xx′+Ση,x|x′ , with Ση,x|x′ =

Ση,xx−Ση,xx′Σ−1
η,x′x′ΣT

η,xx′ the Schur complement of Ση,xx in Ση. In the case where m < n, Σ−1
η,x′x′

denotes the Moore–Penrose generalized inverse of Ση,x′x′ .

4.2 The mirror effect in least angle regression

Expression (23) can be evaluated by Monte Carlo simulation. Using a diagonalization made concrete

in Assumption 4, this section presents fast, approximate computations that work well in practice. The

diagonalized computation of the conditional expectations in (23) is facilitated if the selection events X0

and X1 are rewritten in terms of η, for which Assumption 3 is needed.

The idea is written out below for the case of least angle regression with normal errors. The least angle

regression routine (Efron et al., 2004) uses Mallows’ Cp as a stopping criterion. The stopping rule implies

an optimization in a high-dimensional model, inducing the optimization bias or mirror effect described in

this paper. The lasso shrinkage, incorporated in the least angle regression routine or in alternatives such

as iterative soft thresholding (Daubechies et al., 2004), compensates for the optimization bias. When

the model is used for estimation without shrinkage, the mirror effect must be taken into account in the

stopping criterion during variable selection.

Least angle regression selects a variable according to the absolute values of the inner products ĉ =
KT (Y −K β̂LARS

x ) = KTε +KT (Kβ −Kβ̂LARS
x ). The selection threshold is then λn1 = |ĉ|(n0:n),

this is the n0th order statistic in vector c of size n, where n0 = n − n1. The following assumption

expresses that the least angle regression routine performs well in identifying the true model.

Assumption 3 For n → ∞, least angle regression finds a selection x∗ of size n∗
1 that satisfies two

conditions. Firstly, it is sparse, so that n∗
1 = o(n). Secondly, it contains the true model except for
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possible small components, so that ‖KTKE(β̂LARS
x∗ )−KTKβ‖22 = O(n∗

1). In other words, the expected

estimator within the selection satisfies the normal equation, up to a bias which is dominated by the

estimation variance.

In any subsequent selection containing x∗, the difference ĉ−η = KTK(β̂−β) will primarily depend on

the errors, not on the estimation bias. As the variable selection is based on ĉ, the ith variable is selected

if |ηi| is large and the ith component of KTK(β̂ − β) is low. The latter term is low if the ith column

of K belongs to a multicollinear set of selected columns. Conditioning the selection of a variable on a

large value of |ηi|, we thus have that q1(i) = P (Xi = 1 | |ηi| ≥ λn1) depends on the relative positions

of the columns of K on the n-dimensional unit disk. Assuming a uniform distribution of the columns

over the disk, it holds that q1(i) ≈ n/m. Similarly, defining q0(i) = P (Xi = 0 | |ηi| < λn1), we can

write q0(i) ≈ 1− q∗1, where q∗1 is the proportion of nonzeros in β. In sparse data, 1− q∗1 ≈ 1.

The mirror effect is now computed in several steps, following the expressions of Section 4.1. Let

ζx′ = V T
x′ηx′ be the principal components of the marginal vector ηx′ , that is, cov(ηx′) = Vx′Λx′V T

x′ ,

with Λx′ a diagonal matrix containing the eigenvalues of the covariance matrix. A similar definition is

given for ζx. Also define dx′ = V T
x′cx′ . Then cov(ηx′ | X0) = Vx′cov(ζx′ | X0)V

T
x′ .

Assumption 4 We assume that conditioning on the ℓ∞ ball X0 =
⋂

i|xi=0{ĉ
2
i ≤ λ2

n1
} in terms of cx′ is

well approximated by conditioning on the rotated ball Xd
0 =

⋂
i|xd

i=0{d̂
2
i ≤ λ2

n1
}. In this definition, the

label Xd
i = 0 means that d̂2i < λ2

n1
. So, we assume that cov(ζx′ | X0) ≈ cov(ζx′ | Xd

0).

As the components of ζx′ are independent, the impact of the event Xd
0 can be computed for each compo-

nent separately, using the result for orthogonal design in (16). Writing σ2
i = var(ζx′,i) = σ2Λx′,ii, the

statement of (16) reads as E(ζ2x′,i | ζ
2
x′,i > λ2

n1
)P (ζ2x′,i > λ2

n1
) = σ2

i P (ζ2x′,i > λ2
n1
)+2σ2

i λn1φσi(λn1).
As this expression conditions on the magnitude of ζx′,i, the rules of total probability and Bayes are used

to link it to {Xd
i = 0},

var(ζx′,i | X
d
i = 0) =

{
E
(
ζ2x′,i | X

d
i = 0, |ζi| < λn1

)
P
(
Xd

i = 0 | |ζi| < λn1

)
P (|ζi| < λn1)

+ E
(
ζ2x′,i | X

d
i = 0, |ζi| ≥ λn1

)
P
(
Xd

i = 0 | |ζi| ≥ λn1

)
P (|ζi| ≥ λn1)

}

/P (Xd
i = 0).

After simplification and introducing qd1 = P
(
Xd

i = 1 | |ζi| ≥ λn1

)
≈ n/m, and qd0 = P

(
Xd

i = 0 | |ζi| < λn1

)
≈

1, we get

var(ζx′,i | X
d
0) ≈ σ2

i

[
1−

qd12λn1φσi(λn1)

1− qd12{1 − Φσi(λn1)}

]
(24)

Expression (24) finds the elements of the diagonal covariance matrix cov(ζx′ | Xd
0), which approximates

cov(ζx′ | X0). Multiplication by Vx′ leads to the covariance matrix cov(ηx′ | X0), which is used in

the computation of cov(ηx | X0); see Section 4.1. This matrix is then diagonalized as cov(ηx | X0) =
VxΛxV

T
x , and ζx = V T

x ηx. The same type of approximation replaces the event X1 by a rotated version,

leading to cov(ηx | X0,X1).
In simulations, the resulting approximate calculation of m̂(n1) performs well, meaning that it allows

accurate estimation of the prediction error of a least square estimator without shrinkage in a best n1
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False Positive Percentage False Negative Percentage False Discovery Percentage

5% 50% 95% 5% 50% 95% 5% 50% 95%

Cp 9.5 16.1 21.9 0 0 0 68.0 75.7 81.2

Cp + 2m̂ 0.5 1.8 3.5 0 0 0 10.5 25.0 37.5

Table 2: Quantiles for operating characteristics of least angle regression with and without mirror correc-

tion.

term model. Since the approximation assumes that the least angle regression routine reveals the essential

terms in the model, problems may occur in cases where this is difficult, in particular, when the number

of nonzeros in β is large compared to the number of observations n.

4.3 Comparative simulation study

This section investigates the effect on the variable selection of a least angle regression scheme of using

the new stopping criterion Cp(Xn1)+2m̂(n1) instead of Cp(Xn1). Given the variety of design matrices

K and error models, this comparison cannot cover all possible cases. The simulation study generates

200 instances of the model in (1), with a new design matrix K each time, whose elements are all inde-

pendently chosen from a uniform distribution on [0, 1]. The number of observations is n = 300, while

the number of parameters is m = 600. Each parameter βi is generated independently from a distribution

on {−1, 0, 1} with probabilities P (−1) = P (1) = p/2 and P (0) = 1 − p. The sparsity parameter is

taken to be p = 0.05. The errors are independently, identically distributed N(0, σ2) random variables,

so that the signal-to-noise ratio, defined as SNR = 10 log(‖Kβ‖22/nσ
2), equals 10.

Table 2 summarizes the empirical values of three operating characteristics. The first is the false

positive percentage in each simulation run, defined as 100 times the number of false positives divided

by the number of zeros in the parameter vector β. The second is the false negative percentage, defined

as 100 times the number of missed nonzeros divided by the number of nonzeros in the parameter vector.

The third is the false discovery percentage, defined as 100 times the number of false positives divided by

the number of discoveries. For all three characteristics, the table displays three empirical quantiles.

Both the original Cp criterion and the mirror corrected version find all true nonzeros in β, there are no

false negatives. The original Cp criterion, however, selects much larger models than the mirror corrected

criterion, thus containing far more zeros in β. The median number of zeros selected by the Cp criterion

amounts to 16.1% of all the zeros in the full model and to a majority of 75.7% of the selected variables.

Measured by the median values of the simulation study, the corrected criterion selects only 1.8% of the

zeros, leading to a minority of 25% of false positives among the selected variables. Larger numbers of

observations and parameters as well as other design matrices may lead to lower false discovery rates.

Supplementary material

Supplementary Material includes a proof of Proposition 1, the study of the mirror effect for Akaike’s

information criterion, a few interpretations on the proofs in Appendix A, a discussion on mirror penalties

versus penalties proposed in Birgé and Massart (2007), a discussion on Assumption 2, and a note on

15



accompanying software.
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Appendices

A Proofs of Lemmas 1 and 2

A.1 Proof of Lemma 1

The term P (Sn,n0 | β = v) appearing in the expression (13) for the denominator of (14) can be decom-

posed into

P (Sn,n0 | βn = v) =

∫ ∞

−∞
P (Sn,n0 | Yn = y) fYn|βn

(y | v)dy.

Given an observation Yn = y, the event Sn,n0 occurs if and only if the n0th order statistic of the remaining

n − 1 observations is above |Yn| = |y|, so P (Sn,n0 | Yn = y) = P (|Yn|(n0:n−1) > |y|). This is a non-

increasing function of |y|. Hence

P (Sn,n0 | βn = v) ≥

∫

|y|<|v|
P (Sn,n0 | Yn = v) fYn|βn

(y | v)dy

= P (|Yn| < |v| | βn = v)P (Sn,n0 | Yn = v).

The second factor can we rewritten as P (Sn,n0 | Yn = v) = P{U(n0:n−1) > F|Yn|(|v|)}, where

U(n0:n−1) is the n0th order statistic of n − 1 independent uniform variables on [0, 1]. If QX(p) de-

notes the quantile function of X, and if vγ,n = Q|Yn|{QU(n0:n−1)
(1 − γ)} for a positive constant γ,

then P (Sn,n0 | Yn = vγ,n) = γ, and P (Sn,n0 | βn = vγ,n) ≥ P (|Yn| < |vγ,n| | βn = vγ,n) γ.
Since n0/n → 1, we can apply Lemma 3, stated below, to arrive at QU(n0:n−1)

(1 − γ) → 1 and thus

P (Sn,n0 | βn = vγ,n) is bounded by γ/2 in the limit. Moreover, since P (Sn,n0 |βn = v) must also be a

non-increasing function of |v|, the same lower bound holds for any vn with magnitude below vγ,n. For

all these values, the ratio {t(n1, vn)− t(n1, 0)}/r(n1, vn) thus tends to zero if {t(n1, vn)− t(n1, 0)}/v
2
n

tends to zero.

Among the values of vn with magnitude below vγ,n, we first consider the case that vn is arbitrarily

close to 0. Then, for fixed n, we have

Ln = lim
v→0

t(n1, v)

v2
=

1

2

∂2t

∂v2
(n1, 0) =

∫ ∞

−∞
(σ2−e2)fε(e)a

′′
n(e) de =

∫ ∞

−∞

{
(σ2 − e2)fε(e)

}′
a′n(e) de,

where an(x) = P (Sn,n0 | Yn = x). As before, we interpret the event Sn,n0 given the observation Yn = x
as an(x) = 1 − FU(n0:n−1)

{
F|Yn|(|x|)

}
The order statistic U(n0:n−1) of independent, uniform random

variables has a Beta distribution with mean E(U(n0:n−1)) = n0/n and variance var(U(n0:n−1)) = n0(n−
n0)/n

2(n+ 1).
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Denoting g(e) =
{
(σ2 − e2)fε(e)

}′
, we can write

Ln =

∫ ∞

0
{g(−e)−g(e)}dFU(n0 :n−1)

{
F|Yn|(e)

}
= E

[
g{−Q|Yn|(U(n0:n−1))} − g{Q|Yn|(U(n0:n−1))}

]

We approximate E
[
g{Q|Yn|(U(n0:n−1))}

]
by g{Q|Yn|(EU(n0:n−1))} = g{Q|Yn|(n0/n)} → 0 as n0/n →

1 when n → ∞. The error of this approximation satisfies

(
E
[
g{Q|Yn|(U(n0:n−1))}

]
− g{Q|Yn|(n0/n)}

)2
≤ max

s∈[0,1]

[
dg{Q|Yn|(s)}

ds

]2
E
(
U(n0:n−1) −

n0

n

)2

= max
u∈R

[{
(σ2 − e2)fε(e)

}′′

f|Yn|(e)

]2
var(U(n0:n−1)).

The factor var(U(n0:n−1)) = O(n1/n
2) when n → ∞. The factor

{
(σ2 − e2)fε(e)

}′′
/f|Yn|(e) is

bounded for finite u because f ′′
ε (e) exists and is finite. It remains bounded for n → ∞ thanks to the

sparsity condition in the statement of Lemma 1. The factor tends to zero for infinite u because of the

error-free domination condition in Lemma 1, namely log fε(e)/ log f|Yn|(e) → ∞. This proves Lemma

1 for vn arbitrarily close to zero.

For all the other cases, r(n1, vn) does not converge to zero, while t(n1, 0) →
∫∞
−∞(σ2−e2)fε(e) de =

0. So it suffices to prove that t(n1, vn)/r(n1, vn) → 0. We pick an arbitrarily small δ and we set

λδ,n = Q|Yn|

{
QU(n0:n−1)

(1− δ)
}
. Then, P (Sn,n0 | Yn = y) > δ if and only if |y| < λδ,n, hence, for

any v,

t(n1, v) =

∫ λδ,n−v

−λδ,n−v
(σ2 − e2)fε(e)P (Sn,n0 | Y = v + e) de +O(δσ2).

If |vn| < vγ,n, but unbounded by a constant value, then 1/r(n1, vn) ∼ 1/v2n → 0, while t(n1, vn) is

bounded by σ2. If |vn| < vγ,n and bounded by a constant, then

lim
n→∞

∫ λδ,n−vn

−λδ,n−vn

(σ2 − e2)fε(e)P (Sn,n0 | Y = vn + e) de = 0.

This follows from Lemma 4, stated below, and from the fact that λδ,n → ∞ for n → ∞.

Finally, if |vn| cannot be bounded by vγ,n for any positive γ, then for n sufficiently large,

∫ λδ,n−vn

−λδ,n−vn

(σ2 − e2)fε(e)P (Sn,n0 | Y = vn + e) de < δ,

as λδ,n − vn ≤ −vγ,n → −∞, where we took γ < δ. ✷

The remainder of this section proves the auxiliary lemmas used above.

Lemma 3 Let U and V be independent and symmetrically distributed around zero and let fU(u) also

be unimodal. Define W = V + U . Then, for any value α ∈ [0, 1], Q|Y |(α) ≥ Q|U |(α).

Proof. It is straightforward to verify that for any value α ∈ [0, 1], QX(α) ≥ QY (α) if and only if FX(x) ≤
FY (x) for any value x ∈ R. Second, F|Y |(x) = FY (x) − FY (−x). We now prove that for positive x it

holds that FY (x) ≤ FU (x). Similar arguments hold for negative x.
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As the distribution of U is symmetric and unimodal, we have for any x, v > 0 that fU (x + v) ≤
fU(x− v), so FU (x+ v)− FU (x) ≤ FU (x)− FU (x− v) or FU (x+ v) + FU (x− v) ≤ 2FU (x).

Then, using the symmetry of V , we can write

FY (x) =

∫ ∞

−∞
FU (x− v)fV (v)dv = E

{
FU (x− V )

}
=

1

2
E
{
FU (x− V ) + FU (x+ V )

}
≤ FU (x).

✷

Corollary 1 Let Wn = Vn+U , where Vn and U are independent and have symmetric distributions. Also

suppose that U has a unimodal distribution on R. Then if αn → 1 for n → ∞, we have Q|Wn|(αn) →
∞, whatever the distributions of Vn.

Indeed, Q|Wn|(αn) ≥ Q|U |(αn) → ∞.

Lemma 4 Suppose that 0 ≤ pn(x) ≤ 1 is monotone non-decreasing for negative x, and monotone non-

increasing for positive x and limn→∞ pn(x) = 1 for any value of x. Also assume that A =
∫∞
−∞ |f(u)|du

exists and is finite, and define In =
∫ λn−c
−λn−c f(u)pn(u)du for constant c. Then, for limn→∞ λn = ∞,

limn→∞ In = I =
∫∞
−∞ f(u)du.

Proof. Consider an arbitrary ε and find a value ℓ∗ such that λℓ for ℓ ≥ ℓ∗ is sufficiently large in the sense

that
∫∞
λℓ−c |f(u)|du+

∫ −λℓ−c
−∞ |f(u)|du < ε. Then find a value m∗ so that for m > m∗ : pm(λℓ∗) > 1−ε,

and define n∗ = max(ℓ∗,m∗), then for n > n∗,

|I − In| =

∣∣∣∣
∫ ∞

λn−c
f(u)du+

∫ −λn−c

−∞
f(u)du+

∫ λn−c

−λn−c
f(u){1− pn(u)}du

∣∣∣∣

≤

∫ ∞

λℓ−c
|f(u)|du+

∫ −λℓ−c

−∞
|f(u)|du+

∫ λℓ−c

−λℓ−c
|f(u)|{1 − pn(λℓ∗)} < ε+Aε.

✷

A.2 Proof of Lemma 2

Until now, we had m(n1) ∼ t(n1, 0) =
∫∞
−∞(σ2 − e2)fε(e)P (Sn,n0 | Yn = e) de.

As in the proof of Lemma 1, we use that P (Sn,n0 | Yn = e) = P (|Yn|(n0:n−1) > |e|) = 1−FXn(|e|),
where Xn is the n0th order statistic in n independent observations from |Yn|. Next we define g1(e) =
(σ2−e2)fε(e) and we recycle the notation g(e) = g1(e)+g1(−e) for different purpose than in the proof

of Lemma 1. Finally we introduce G(e) =
∫ u
0 g(t)dt. It holds that G(0) = 0 = G(∞).

The value of t(n1, 0) can then be expressed as

t(n1, 0) =

∫ ∞

−∞
g1(e) {1− FXn(|e|)} de =

∫ ∞

0
g(e) {1− FXn(e)} de =

∫ ∞

0
G(e)fXn(e) de

= E {G(Xn)} = E
[
G{Q|Yn|(U(n0:n−1))}

]
.
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This proof entails approximating the expression above by G[Q|Yn|{E(U(n0:n−1))}] =
∫ λn

−λn
(σ2−e2)fε(e) =

τ(λn), where λn = Q|Yn|(EU(n0:n−1)). The approximation error satisfies

(
E
[
G{Q|Yn|(U(n0:n−1))}

]
−G{Q|Yn|(n0/n)}

)2
≤ max

s∈[0,1]

[
dG{Q|Yn|(s)}

ds

]2
E
(
U(n0:n−1) −

n0

n

)2

= max
u∈R

[
(σ2 − e2)fε(e)

f|Yn|(e)

]2
var(U(n0:n−1)).

Similar arguments as in the proof of Lemma 1 can be used here. The factor var(U(n0:n−1)) = O(n1/n
2)

when n → ∞. The first factor is bounded because of sparsity and dominance assumed in the statement

of Lemma 2. Ultimately we find that |t(n1, 0) − τ(λn)| = O(n
1/2
1 /n), which is slightly faster than

r(n1, vn). Indeed, from Expression (8), and taking into account that E(ε2 | Sn,n0) ≤ σ2, we easily find

that E{PE(Jn1)} ≥ n1
n σ2. That lower bound still holds when conditioning on Vn = v. ✷
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A Proof of Proposition 1

First we note that the denominator of (19) can be written as

PE(β̂H
λ ) =

1

n

n∑

i=1

β2
i P (Xi = 0) +

1

n

n∑

i=1

E
{
(Yi − βi)

2 | Xi = 1
}
P (Xi = 1). (25)

We write

κ(λ,β) =
1

n

n∑

i=1

κ(λ, βi),

where

κ(λ, β) = E {sign(β + ε) εX;β} =

∫ −λ−β

−∞
ufε(u)du+

∫ ∞

λ−β
ufε(u)du,

and X = I(|β + ε| ≥ λ), as before.

We also define the risk contribution of one component, as a function of the threshold value and the

component value.

r(λ, β) = β2 P (|β + ε| < λ) +E
{
ε2 | |β + ε| ≥ λ

}
P (|β + ε| ≥ λ),

so that RH(λ,β) = n−1
∑n

i=1 r(λ, βi).
We now establish upper bounds for the one-component relative approximation error

λ
κ(λ, β)− κ(λ, 0)

r(λ, β)
,

depending on the behavior of β as λ increases. The threshold increases as function of n. The sub-

sequent analysis shows that, whatever the behavior of a particular component with increasing n, the

one-component relative approximation error tends to zero. The dependence from n in threshold and

component is omitted in the subsequent notations.

We distiguish between |β| − λ bounded from above and the case where |β| − λ is positive and

unbounded.

First we consider the case that −λ−Γ ≤ β ≤ λ+Γ, with Γ an arbitrary real number. We start from

the lower bound, valid in any case,

r(λ, β) ≥ σ2
0 P (|β + ε| > λ) + β2 P (|β + ε| ≤ λ) ≥ β2 P (|β + ε| ≤ λ).



Furthermore we have for 0 ≤ β ≤ λ+ Γ that the factor

P (|β + ε| ≤ λ) = P (β + ε ≤ λ)− P (β + ε ≤ −λ) = P (ε ≤ λ− β)− P (ε ≤ −λ− β)

≥ P (ε ≥ Γ)− P (ε ≥ λ),

and the same expression holds for −λ− Γ ≤ β ≤ 0, with a similar proof.

This allows us to concentrate on the function

γ(λ, β) =
λ

β2

{
κ(λ, β) − κ(λ, 0)

}
.

We prove the following lemma:

Lemma 5 If E(ε2+ρ) exists and is finite for some positive ρ and the density function fε(u) is symmetric

and has a converging derivative for u → ±∞, then the function γ(λ, β), defined above, satisfies

lim
λ→∞

γ{λ, β(λ)} = 0,

for any function β(λ) bounded by ±(λ+ Γ), where Γ is zero or a positive real number.

Proof. Consider an arbitrarily small δ > 0. We will prove that there exists a value λ∗ so that if λ > λ∗ it

holds that γ{λ, β(λ)} < δ.

We first consider the case that β(λ) for some λ is arbitrarily close to zero. It is easy to verify that for

fixed λ, and symmetric fε(u),

lim
β→0

γ(λ, β) =
1

2
λ
∂2κ

∂β2
(λ, 0) = −λ

{
λfε(λ)

}′
.

Then for any positive λ, there exists a value β0, so that for any β with |β| < β0,

|γ(λ, β)| < λ
∣∣{λfε(λ)}′

∣∣+ δ/2.

Moreover, as E(ε2) is finite, we have limu→∞ u2fε(u) = 0. Since limu→∞ f ′
ε(u) exists, which for a

density function means it must be zero, we can apply de l’Hôpital’s rule to find

0 = lim
u→∞

ufε(u)

1/u
= lim

u→∞

{ufε(u)}
′

−1/u2
= lim

u→∞
u u{ufε(u)}

′

and thus

lim
u→∞

u{ufε(u)}
′ = 0.

Hence, there exists a λ∗
1 such that for λ > λ∗

1,

λ
∣∣{λfε(λ)}′

∣∣ < δ/2.

We thus have found a value β0, independent from λ, for which

|γ(λ, β)| < δ,
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if |β| < β0 and λ sufficiently large.

Second, we consider the case that β(λ) for a given value λ is small, but not arbitrarily close to zero.

More precisely, suppose that β0 < |β| < λ− λ1/(1+ρ), with 0 < ρ, then

|γ(λ, β)| ≤
λ

β2
0

∫ ∞

λ1/(1+ρ)
ufε(u) du,

and

lim
λ→∞

λ

∫ ∞

λ1/(1+ρ)

ufε(u) du = lim
x→∞

∫∞
x ufε(u) du

x−(1+ρ)

= lim
x→∞

xfε(x)

(1 + ρ)x−(2+ρ)

=
1

1 + ρ
lim
x→∞

x3+ρfε(x).

The latter limit must be zero in order for E(ε2+ρ) to be finite. We thus have a value λ∗
2 above which

|γ(λ, β)| ≤ δ if β0 < |β| < λ− λ1/(1+ρ).

Third, we concentrate on values β close to the threshold value λ, namely λ−λ1/(1+ρ) < |β| < λ+Γ.

As

|κ(λ, β)| ≤ E(|U |)/2,

we can write, for λ → ∞,

|γ(λ, β)| ≤
λ

(
λ− λ1/(1+ρ)

)2 E(|U |) → 0,

leading to the conclusion that there exists a value λ∗
3 above which

∣∣∣γ(λ, β)
∣∣∣ ≤ δ if λ− λ1/(1+ρ) < |β| <

λ. Taking λ∗ = maxi=1,2,3 λ
∗
i concludes the proof of Lemma 5. ✷

In order to finish the proof of Proposition 1, we have to consider one more case, that of unbounded

ζ(λ) = |β| − λ.

If ζ(λ) grows at least as λρ with postive ρ, possibly smaller than 1, then the exponential decay of

fε(u) ensures that λ [κ(λ, β) − κ(λ, 0)] → 0, while r(λ, β) converges to σ2.

Otherwise, that is, if ζ(λ)/λ → 0, then the dominating term in λκ(λ, β) is

λκ(λ, β) ∼ λ

∫ ∞

−ζ(λ)
ufε(u)du.

The contribution to the prediction error is bounded from below by

r(λ, β) ≥
{
λ+ ζ(λ)

}2
∫ −ζ(λ)

−2λ−ζ(λ)
fε(u)du.

The ratio of these two converges to zero (as follows from applying de L’Hôpital’s rule).

All together, we conclude that

λ |κ(λ,β) − κ(λ, 0)|

σ2
0

EN1
n + 1

n

∑n
i=1 β

2
i P (Xi = 0)

≤ max
β∈R

λ |κ(λ, β) − κ(λ, 0)|

r(λ, β)
→ 0,

for λ → ∞.
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B The Mirror effect for Akaike’s Information Criterion

Akaike’s Information Criterion estimates the Kullback–Leibler distance of a model with respect to true,

unobserved distributions of the observations. Let gY (y) be the joint density of n independent observa-

tions Y , and let fY (y;θ) be a model for these observations, with p parameters in θ, then the Kullback–

Leibler distance equals

KL{g, f(·,θ)} =
1

n

n∑

i=1

{Eg log gi(Yi)− Eg log fi(Yi;θ)} , (26)

where gi and fi are the true and model marginal densities. It is obvious that the terms Eg log gi(Yi) acts

as constants, and so model selection concentrates on the sum

Hx(θ) =
1

n

n∑

i=1

Eg{log fi(Yi;θ)}. (27)

In this notation Hx, the subscript x refers to the model under consideration. As introduced in Section

2, x is a binary vector of length n where the ones correspond to the parameters that are estimated in the

model, whereas the zeros are parameters that are not included in this particular model.

At this point, we restrict discussion to independent, homoscedastic, normally distributed data, that

is, the true model can be written as Y = β + ε, where ε is a zero mean normal vector with constant

variance σ2. This true model belongs to the space of models considered in our selection procedure. Let

β̃ and σ̃2 in a model x be values of the unknown parameters under consideration, then

Hx(β̃, σ̃
2) =

1

n

n∑

i=1

Eg

{
−
(Yi − β̃i)

2

2σ̃2
−

1

2
log(2πσ̃2)

}

= −
1

n

n∑

i=1

{
(βi − β̃i)

2 + σ2

2σ̃2
+

1

2
log(2πσ̃2)

}
.

In practice, the values β̃ and σ̃2 follow from an estimation procedure within a selected model. As a

consequence, the outcome is random, say β̂ and σ̂2, and hence, so is the value of Hx(β̂, σ̂
2).

Since we cannot evaluate Hx(β̃, σ̃
2) because of the unobserved β and σ2, we substitute the expected

value operator Eg by its empirical counterpart, based on an estimator of the unknown parameters, thus

defining

Q̂x(β̂, σ̂
2) =

1

n

n∑

i=1

{
−
(Yi − β̂i)

2

2σ̂2
−

1

2
log(2πσ̂2)

}
. (28)

Imposing a variance estimator based on the residuals, σ̂2 = n−1
0

∑n
i=1(Yi − β̂i)

2, we arrive at

Q̂x = −
1

2

n0

n
−

1

2
log(2πσ̂2).

In this expression, n0 = n− n1, where n1 is number of nonzeros in the model x.
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The difference in expectation between Hx(β̂, σ̂
2) and Q̂x(β̂, σ̂

2) equals

E(Q̂x −Hx) = −
1

2

n0

n
+

1

2
E

[
σ2

σ̂2

1

n

n∑

i=1

{
(βi − β̂i)

2

σ2
+ 1

}]
. (29)

In the case of component selection in a sparsity model, that is, β̂i = Yi xi, with x the (not yet random)

model under consideration, we have that σ̂2 = n−1
0

∑
i∈I0

Y 2
i and

∑n
i=1(βi − β̂i)

2 =
∑

i∈I0
β2
i +∑

i∈I1
(Yi−βi)

2, where I1 is the set of indices corresponding to the ones in vector x and I0 the comple-

mentary set. As I1 and I0 are disjoint sets, both factors in the product of (29) have no common random

term, so these factors are independent. Moreover, under the assumption that βi = 0 if i ∈ I0, we have

n0σ̂
2/σ2 ∼ χ2

n0
, so E(σ2/σ̂2) = n0/(n0 − 2). All this leads to

E(Q̂x −Hx) = −
1

2

n0

n
+

1

2

(
n0

n0 − 2

n+ n1

n

)
=

n0(n1 + 1)

n(n0 − 2)
∼

n1 + 1

n
.

Defining Akaike’s Information Criterion as

AIC(x) = 2Q̂x − 2
n1 + 1

n
, (30)

we see that E{AIC(x)} ≈ 2EHx(β̂, σ̂
2), where β̂i = Yi xi and σ̂2 = n−1

0

∑n
i=1(Yi − β̂i)

2.

If X is found by minimization of E{AIC(x)} for given n1, then I0 is no longer a fixed, but a random

set and at the same time, the zero mean components in this set are no longer independently, normally

distributed. The two factors in (29), conditionally independent on X , are now dependent.

In sparsity models, the n1 parameters of the selected model are the positions of the nonzero elements

in β̂. The optimal value of AIC(x) for given n1 is obtained by choosing the n1 observations in Y with

largest magnitude. As in Section 2.3, Xn1 stands for the random set of selected components and we let

σ̂2
n1

= n−1
0

∑
i∈X ′

n1
Y 2
i . We further denote Kn1 and Q̂n1 for the values of Hx and Q̂x corresponding to

Xn1 . We can write

E(Q̂n1 −Kn1) = −
1

2

n0

n
+

1

2
E


 σ2

σ̂2
n1



1 +

1

n

∑

i∈Xn1

ε2i
σ2

+
1

n

∑

i∈X ′

n1

β2
i

σ2






 .

We have that
1

n

∑

i∈Xn1

ε2i
P
→ σ2 −

1

n

∑

i∈X ′

n1

ε2i .

Again considering an independent, identically distributed random model for β, as in Section 2.3, we find

1

n

∑

i∈Xn1

ε2i
P
→ σ2 −

n0

n
E(ε2 | An,n0).

For the penalty in Akaike’s information criterion after selection, this becomes

E(Q̂n1 −Kn1) → −
1

2

n0

n
+

1

2

{
σ2 + σ2 − n0

n E(ε2 | An,n0) +
n0
n E(β2

n | An,n0)

E(Y 2
n | An,n0)

}
.
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As in Section 2.3, Assumption 2 and its implication (9), we can omit o(n1/n) terms to arrive at

E(Q̂n1 −Kn1) ∼ −
1

2

n0

n
+

1

2

{
2σ2 − n0

n E(ε2 | An,n0)

E(ε2 | An,n0)

}
=

σ2

σ2
A

−
n0

n
,

where σ2
A = E(ε2 | An,n0).

If we denote σ2
λ = E(ε2 | −λn < Yn < λn) and ñ0 = nP (|U | < λn), then for λn defined in

Lemma 2 of the main article, this Lemma states that

n0

n
(σ2 − σ2

A) ∼
ñ0

n
(σ2 − σ2

λ),

where the asymptotic equivalence is relative with respect to the risk; see the Lemma for details. We can

write

E(Q̂n1 −Kn1) ∼
σ2

σ2
A

−
n0

n
=

σ2

σ2
A

n1

n
+

1

σ2
A

n0

n
(σ2 − σ2

A) ∼
σ2

σ2
A

n1

n
+

1

σ2
A

ñ0

n
(σ2 − σ2

λ).

Furthermore, we have

σ2
A ∼ σ2

λ +

(
1−

ñ0

n0

)(
σ2 − σ2

λ

)
= σ2

λ +O

(
n1

n− n1

)
,

so we can replace σ2
A by σ2

λ, leading to

AICm(n1) = 2Q̂n1 − 2E(Q̂n1 −Kn1) = −
n0

n
− log(2πσ̂2)− 2

n1

n

σ2

σ2
λ

− 2
ñ0

n

(
σ2

σ2
λ

− 1

)
, (31)

which is (21) in the article.

The mirror effect in Akaike’s criterion is illustrated in Figure 2. The setup for the simulation dis-

played in Figure 2 has been the same as that of Figure 1 in the main article.

C Remarks about the proofs in Appendix A

Remark 1 The convergence analyses of both approximating expressions for the mirror rely on upper-

bounds for expressions of the form

max
u∈R

{
(σ2 − e2)fε(e)

f|Yn|(e)

}2

var(U(n0:n−1)).

We have found that the second factor converges, but just a bit faster than EPE(Jn1). In practice,

however, the first factor converges as well. Indeed, instead of taking the maximum over all u ∈ R, we

can consider u in the neighborhood of λn = Q|Yn|(n0/n), which tends to infinity. The heavier tail of the

error-free distribution then induces faster convergence. In the case of normal errors and a Laplace prior

for the noise-free data, for instance, additional convergence rate is of the order O
(
exp[{log(n)}1/2]/n

)
,

which is just a little slower than O{log(n)/n}.

Remark 2 The analyses of the approximating mirror expressions rely on the exact Beta distribution of

U(n0:n−1), necessary knowledge in the elaboration of its variance. This exact calculation, however, is

based on the assumption that the observations, and so the errors, are mutually independent. Neverthe-

less, it can be conjectured that even for dependent or correlated errors, the approximating expression for

the mirror effect still holds true.
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Figure 2: Akaike’s information criterion for best n1 term selection with mirror effect. The solid line is

minus the logarithm of the Kullback–Leibler distance for the first n1 variables of a sequence arranged

by an oracle that placed all observations in descending order of magnitude of βi. The dashed, increasing

line is Akaike’s information criterion in its classical form applied to the n1 largest observations in Y .

This curve cannot be used to locate the correct extremum of the Kullback–Leibler curve. Its reflection

with respect to the oracle curve coincides approximately with the dot-dashed line, which is minus the

logarithm of the Kullback–Leibler distance for selection of the n1 largest observations in Y . This curve

is well estimated by the mirror corrected expressions for Akaike’s information criterion, depicted in grey

colors, stated in Equation (21) of the main article. When the variance is estimated using generalized

cross validation (solid grey line), the outcome is better, compared to a variance estimation using median

absolute deviation.
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D The mirror penalty and the penalties of Birgé and Massart

The mirror correction can be seen as a modification of the penalty in a variable selection criterion, taking

the sparsity into account.

In the case of Mallows’s Cp criterion, the mirror corrected version can be written as

∆̃p(n1) =
1

n
‖ŷ − Y ‖22 + 2

n1

n
σ2 + 2

n0

n

{
σ2 − E(ε2|An,n0)

}
,

where An,n0 is the event that Yn is among the n0 smallest observations in a sample of size n, and

n1 = n − n0 is the number of non-small observations, i.e., the size of the selected set of variables. In a

sense explained in the paper, the criterion can be approximated by the expression

∆̃p(n1) ≈
1

n
‖ŷ − Y ‖22 + 2

n1

n
σ2 + 2σ2

∫ λn1

−λn1

(
1−

u2

σ2

)
fε(u)du,

where fε(u) is the error density and λn1 = Q|Y |(1 − n1/n), with Q|Y |(α) the quantile function of the

magnitude of the observation Y in a Bayesian model Y = β + ε. The approximative criterion reduces,

in the case of normal errors, to

∆̃p(n1) ≈
1

n
‖ŷ − Y ‖22 + 2

n1

n
σ2 + 4σ2λn1φσ(λn1),

where φσ(x) is the normal probability density function with zero mean and variance σ2.

An important benchmark in this respect is the minimum penalty resulting from the analysis by Birgé

and Massart (2007).

Before comparing the mirror penalty with the minimum penalty, I first list the main differences in

approach and results between their and my paper.

1. The newly proposed viewpoint of the problem as a mirror effect allows to establish a sparsity

correction for selection criteria other than Mallows’s Cp, the case of AIC being worked out in the

text. The mirror correction is also possible for error densities other than normal.

2. The result of the new analysis is not a lower bound on the penalty, but a data-dependent penalty.

The data-dependency is realized by a threshold value λn1 which is a quantile of the observations

Y in a Bayesian model. The Bayesian description has no further impact in the practical imple-

mentation if we estimate λn1 by its empirical counterpart. The threshold appears in the bounds of

an integration of a function depending only on the error distribution. The threshold thus expresses

exactly what the mirror effect is about: given the number of selected variables n1, the threshold

corresponding to n1 is a matter of the interaction between signal and noise, but once λn1 has been

set, the correction necessary for its quality assessment is a matter of false positives created by error

effects only.

Birgé and Massart present a lower bound that avoids inconsistent estimators, although penalties be-

low the bound do not necessarily lead to problems (Birgé and Massart, 2007, page 42). The presented

lower bound is of the form

penBM(x) = Kx1σ
2
[
1 + 2 log(1/x1) + 2{log(1/x1)}

1/2
]
,

8
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1

 

 

Figure 3: Mirror penalty versus Birgé-Massart lower bound. In grey line: Mallows’s penalty term. In

solid black line: the mirror corrected penalty. In dashed line: the lower bound proposed by Birgé and

Massart. The mirror penalty is adaptive to the sparsity in the data. The steep increase is therefore deferred

to model sizes where errors start to play a role in the selection process.

where x1 = n1/n. The mirror penalty, presented in the paper, can be written as

penmir(x1) = 2x1σ
2 + 4σ2λn1φσ(λn1).

Figure 3 compares the mirror penalty with an implementation of the lower bound for a typical case,

further explained below. We can draw the following conclusions.

1. Although at first sight, it seems that the mirror penalty violates the lower bound, the lower bound

should not be checked for its absolute value, but rather for its slope. Indeed, while a constant

may be added to all possible models to ensure that penalties are above a minimum, a steep slope

discourages models with too many selected variables.

2. The figure illustrates the adaptive nature of the mirror penalty: small models include only highly

significant variables. In the selection of those, there is no need to take any error effect into account.

In that range, the distinction between significant variables and the errors is so clear that the non-

linear selection acts as an oracle that knows the order of the error-free values of β. Such an oracle

can rely on Mallows’s penalty as a stopping criterium in selecting the right number of variables.

From a certain value of n1, depending on the signal at hand, the errors play a role in the selection

procedure, resulting in a steep slope of the penalty in order to keep these effects under control.

Birgé’s and Massart’s lower bound is not data-dependent, which explains the steep slope from the

beginning.

In order to verify that the mirror penalty increases sufficiently fast as soon as observational errors

affect the selection, we first consider the case where the observations contain only errors and no signal

(i.e., βi = 0). Let λ
(0)
n1 = Q|ε|(1− n1/n) = Φ−1

σ (1− x1), then the penalty

penmir0(x1) = 2x1σ
2 + 4σ2λ(0)

n1
φσ(λ

(0)
n1

).
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Figure 4: Plot of function y(x1) = 1 − F|ε|{Q|Y |(1 − x1)} near origin. This function connects a data-

independent version of the mirror penalty to the actual, data-adaptive mirror penalty.

does not depend on F|Y |. Moreover, it can be verified that

dpenmir0(x1)

dx1
≥

dpenBM(x1)

dx1

for x1 near 0.

Next, define y(x1) = 1 − F|ε|{Q|Y |(1 − x1)}, then penmir(x1) = penmir0{y(x1)}. The function

y(x1) is a bijection on [0, 1], whose behavior near 0 is depicted in Figure 4 for the same model as in

Figure 3. In these figures. the error-free data are modelled as zero inflated double exponential variables,

i.e., fβ(β | β 6= 0) = (a/2) exp(−a|β|), where in the figures the hyperparameter values a = 1/5 and

p = P (β | β 6= 0) = 0.05 were used. The model allows to elaborate analytically or numerically all

expected values without any simulation. By definition, it holds that y(1) = 1, while y(x1) ≤ x1. The

function y(x1) is thus a bijective shrinking function. As a consequence, the behavior of penmir0(x1)
is inherited by the function penmir(x1) = penmir0(y(x1)), but with some delay. This implies that

penmir(x1) shows a steep increase as soon as error effects appear in the selection process.

E The interpretation of Assumption 2

Assumption 2 is expressed within the setting of a random model for the error-free parameters βn as

E(β2
n | Sn,n0) = o(n1/n). Translated into a fixed parameter model with a vector βn = (βn,1, βn,2, . . . , βn,n),

this becomes an expected average over all not selected i:

1

n0
E


 ∑

i∈X ′

n1

β2
n,i


 = o(n1/n).
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This can be rewritten as

1

n0
E


 ∑

i∈X ′

n1

β2
n,i


 =

1

n0
E

(
n∑

i=1

β2
n,iI(i ∈ X ′

n1
)

)
=

n

n0

1

n

n∑

i=1

β2
n,iP (i ∈ X ′

n1
),

leading to the formulation n−1
∑n

i=1 β
2
i P (|Yi| < λ) = o(n1n

−1), as found in the article, right after the

statement of Assumption 2.

The assumption can be interpreted as a bound on the lost information due to false negatives or missed

discoveries. It imposes a three-fold condition:

1. the vector βn is sparse;

2. the errors do not hinder a good separation between significant and insignificant components in βn.

More precisely, the tail of the error distribution is not heavy, excluding large noise components

that could interfere with significant components in βn;

3. the model size n1, or the threshold, is well chosen by the variable selection algorithm, so that it

indeed separates between significant and insignificant components.

The remainder of this section discusses the three conditions in a quantitative way.

The notion of sparsity is defined in an asymptotic way, imposing that for n → ∞, the vector βn

becomes sparser, while its mean squared value is assumed to be constant. This can be formalized by

defining an invertible, non-decreasing, positive function βn(x), defined on [0, 1] so that the ordered

absolute vector components satisfy |β|n,(i) = βn(i/n). Sparsity means that ‖βn‖
2
2 = 1, while for some

p < 2, βn(x) ∈ Lp(rn) with rn → 0. The Lp ball with radius rn contains all functions β for which

‖βn‖p ≤ rn, where ‖βn‖p =
∫ 1
0 βp

n(x)dx, for 0 < p ≤ 2.

We define an index of sparsity x1(n) ∈ [0, 1] as the value for which

∫ 1−x1(n)

0
β2
n(x)dx = x1(n). (32)

This L2-concentration index can be seen as the equivalent of the g-index in bibliometry (Egghe, 2006),

where sparsity corresponds to a low index value. If x1(n) is small, then the greater part (1 − x1(n)) of

the energy in the vector βn is concentrated the large components, accounting for only a fraction x1(n)
of the total size of the vector. This concentration is guaranteed for functions in Lp balls, as follows from

the next lemma.

Lemma 6 If βn(x) ∈ Lp(rn), then x1(n) ≤ r
2p/(2−p)
n {1− x1(n)}.

Searching for a variable selection satisfying
∑n

i=1 β
2
n,iP (i ∈ X ′

n1
) = o(n1), we look for model sizes

n1 close to nx1(n).
For n1 = nx1(n), and denoting x̃1(n) =

∫ 1
1−x1(n)

β2
n(x)P{β̂ = 0 | β = βn(x)} dx, we find

∫ 1

0
β2
n(x)P{β̂ = 0 | β = βn(x)}dx ≤

∫ 1−x1(n)

0
β2
n(x) dx+ x̃1(n) = x1(n) + x̃1(n).
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Neglecting the small probability P{Yi < −λn | β = βn(x)}, for λn = βn{1− x1(n)}, the second term

can be bounded by

x̃1(n) ≤

∫ 1

1−x1(n)
β2
n(x) [1− Fε{βn(x)− λn}] dx =

∫ 1

0
X1(s) ds,

where X1(s) =
∫ 1−ξn(s)
1−x1(n)

β2
n(x) dx and ξn(s) = 1−β−1

n {λn+Q|ε|(s)}, with Q|ε|(s) the quantile function

of the error’s magnitude |ε|. Denote ζn(s) =
∫ 1−ξn(s)
0 β2

n(x)dx, then X1(s) = ζ(s) − x1(n). The

function X1(s) can be verified to be non-decreasing in s and X1(1) = 1− x1(n). For x̃1(n) ≤ 2x1(n),
it is thus sufficient that X1{1−x1(n)} ≤ x1(n). The analysis of this condition uses the following lemma

for βn(x) ∈ Lp(rn).

Lemma 7 For any ξn, and ζn =

∫ 1−ξn

0
β2
n(x)dx, we have

ζn − x1(n)

x1(n)− ξn
≤ r−2p/(2−p)

n .

From the lemma, it follows that X1(s) ≤ r
−2p/(2−p)
n (x1(n) − ξn(s)). We want, for s = 1− x1(n) that

X1(s) ≤ x1(n), which is satisfied if x1(n)− ξn(s) ≤ r
2p/(2−p)
n x1(n). We arrive at the condition

β−1
n

[
λn +Q|ε|{β

−1
n (λn)}

]
− β−1

n (λn)

1− β−1
n (λn)

≤ r2p/(2−p)
n . (33)

Condition (33) can be understood as follows: adding the n1 largest noise component to the n1 largest

signal component does not cause the signal rank order β−1
n to increase substantially.

If Condition (33) is satisfied, then n1 = nx1(n) can be taken as model size that meets Assumption

2. As the assumption controls the loss due to missed discoveries, it is automatically satisfied for any

larger model n1 > nx1(n), while the smallest model n1 = nx1(n) tends to n1/n → 0 thanks to the

L2-concentration in Lp balls.

F Software and reproducible figures

The figures and tables in this paper can be reproduced with routines that are part of the latest version of

ThreshLab, a Matlab R©software package available for download from

http://homepages.ulb.ac.be/∼majansen/software/threshlab.html.

See

1. help compareGCVSUREFDRebayesthresh for Table 1;

2. help illustrateLARSell0 for Table 2;

3. help illustratemirroreffect for Figures 1 and 2;

4. help comparemirrorpenaltyBirgeMassart for Figures 3 and 4.
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