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Abstract

This paper integrates Burt-Adelson’s Laplacian pyramids with lifting schemes for the construc-

tion of slightly redundant decompositions. These decompositions implement multiscale smoothing

on possibly non-equidistant point sets. Thanks to the slight redundancy and to the smoothing oper-

ations in the lifting scheme, the proposed construction unifies sparsity of the analysis, smoothness

of the reconstruction and stability of the transforms. The decomposition is of linear computational

complexity, with just a slightly larger constant than the fast lifted wavelet transform. This paper also

discusses several alternatives in the design of non-stationary finite impulse response filters for a sta-

ble multiresolution smoothing system. These filters are adapted to each other and to the locations of

the observations.

1 Introduction

Multiscale decompositions for non-equispaced data have always been a non-trivial extension of the clas-

sical, equispaced, dyadic wavelet transforms. In the non-equidistant case, basis functions cannot be

dilations and translations of a single mother or father function. Indeed, the construction of these basis

functions, such as the one used in the lifting scheme [18, 19], starts off from the locations of the observa-

tions. When these observations are not equidistant, it is impossible to define functions that are shifts of

each other, neither is there a precise notion of scale, because the distance between adjacent observations

is not fixed. As a consequence, important parts of the theory supporting wavelet analyses need to be

reworked. Other constructions, including [3, 14, 1], stay within the classical wavelet decomposition, but

processing irregular samples may require preprocessing or may be suboptimal from the computational

point of view.

The missing parts in the theory behind non-equispaced wavelet decompositions are related to prob-

lematic behavior of some of these decompositions in practical situations. Four issues in the design of

a decomposition can be identified. The first issue is perfect reconstruction (PR). The transform should

be invertible. In general, this condition is fairly easy to satisfy, especially in a classical lifting scheme,

where each operation is readily invertible. In other cases, such as the variant on lifting adopted in this

paper, it is an algebraic matter that can be solved scale by scale. The second issue is sparsity of the

analysis. In a lifting scheme construction, this objective is fairly easy to control. The third issue is the
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numerical condition of the decomposition and reconstruction. The condition can be controlled at two

levels. The first is scale-to-scale condition, i.e., the error propagation when proceeding from a fine scale

representation to one scale coarser with fine scale details. This one-step condition can be managed with-

out too many difficulties. More problematic is the overall numerical condition, that is, the numerical

condition when decomposing data at arbitrarily fine scale into details at many scales. The fourth issue

is smoothness of the basis functions at the synthesis side. These basis functions can be retrieved using

a numerical procedure called subdivision. This subdivision scheme, further explained below, essentially

finds the basis function by gradual refinement at successive scales. With observations at regular loca-

tions, the refinement takes place at midpoints in each step, and the infinite refinement scheme can be

analyzed completely by looking at a single step, resulting in a two-scale equation. When the refinement

is irregular, the two-scale equation itself becomes scale-dependent and therefore difficult to analyze.

Throughout this paper, smoothness at reconstruction and numerical condition will turn out to be

somehow contradictory objectives. The two objectives can be reconciled by replacing the critically down-

sampled lifting scheme by a redundant alternative. The result can be seen as a lifted and non-equispaced

version of Burt-Adelson’s Laplacian pyramid [2]. Lifted pyramids have been proposed in earlier work

[10] as well, in a different context, however, and with different design objectives. As the transform is

redundant, the inverse transform is not unique. We propose a reconstruction with an additional smooth-

ing, thereby generalizing results for equispaced data [8, 15]. As the pyramid filter operations in this

paper are non-stationary, due to the non-equispaced nature of the observations, special attention is paid

to the grid-adaptive design of these sparse filter matrices, satisfying perfect reconstruction, and leading

to smooth reconstructions.

The paper is organized as follows. Section 2 summarizes the principle ideas of the lifting scheme,

whose tools will be adopted in the subsequent sections. All further sections describe original contribu-

tions of this paper. Section 3 replaces interpolation by smoothing as one of the basic techniques used in

a lifting scheme. Multiscale smoothing should be more robust to numerical errors and it should lead to

smoother reconstructions. The section explains that the incorporation of smoothing into lifting requires

the transform to become overcomplete, which leads to a nonequispaced version of a Laplacian pyramid.

The remainder of the section is devoted to design properties, including perfect reconstruction and van-

ishing moments, and their translation into design conditions. Section 4 illustrates the new multiscale

decompositions with an experiment on denoising, followed by a summary and discussion of the main

results in Section 5. Section 6 briefly describes the MatlabTMimplementation that comes with this paper.

2 The lifting scheme

2.1 Lifting steps

A wavelet decomposition is implemented as a sequence of filter banks, each having a high pass and

low pass output. The low pass output serves as input of the next filter bank. The repeated low pass

filtering has a telescoping effect, creating a contributions at different scales j. The lifting scheme is an

implementation of a filter bank. All filter banks used in classical wavelet theory on equidistant point sets

can be decomposed into a sequence of lifting steps [6]. Those lifting steps operate between two subsets

of the input data, as illustrated in Figure 1. In this section, we focus on a filter bank that operates at scale

j. That implies that we suppose that its input comes from the output of a previous filter bank at scale

j + 1, while one of its output branches is further processed by a filter bank at coarser scale j − 1. In a
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Figure 1: General lifting scheme and its inverse. The dots between the split stage and the actual lifting

steps represent the possibility of having a longer sequence than just two steps.

lifting implementation, the input of the filter bank is partitioned into even and odd indexed subsets. That

is, if Jj is the set of indices into the data vector sj , then lifting starts by splitting it into Jj = e∪ o, with

e ∩ o = ∅. This expression does not impose a strict even-odd alternated partitioning. Other splits are

possible, and sometimes also recommended, for instance if the observations are at irregular time points

[20, 21]. The actual lifting operations start after the split and appear in two kinds, depending on the

direction they work. Dual lifting operates from the even onto the odd branch, and can be interpreted

as a prediction of the odd indexed values, based in the evens. The difference between observed value

and neighbor based prediction is typically small, and acts as a wavelet or detail coefficient at the current

scale. Primal lifting operates on the odd branch, and can be interpreted as updating the even values before

proceeding to the next, coarse scale. The update can be seen as anti-aliasing in signal processing terms,

as numerical stabilization, or as variance reduction, smoothing in statistical terms.

A general lifting scheme consists of a sequence of mostly alternating dual and primal lifting steps.

As an illustration of the formalism, the remainder of this section elaborates the case of a single dual

step followed by a single primal step. Denote by Pj the dual (prediction) lifting operation at scale j.
It is a nj,o × nj,e matrix, where nj,o = |o| and nj,e = |e| are the cardinalities of e and o respectively.

Similarly, the nj,e × nj,o matrix Uj stands for the primal (update) lifting operation. Then, the forward

lifting transform is

wj = sj+1,o − Pj · sj+1,e (1)

sj = sj+1,e +Uj ·wj (2)

The inverse of the operation follows immediately by inversion of the expressions above.

sj+1,e = sj −Uj ·wj (3)

sj+1,o = wj + Pj · sj+1,e (4)

2.2 Underlying basis transform

In order to associate basis functions with this transform, we define a function fj+1(t) = Φj+1(t) · sj+1,
where Φj+1(t) is a vector of primal basis functions, i.e., Φj+1(t) = [ . . . ϕj+1,k(t) . . . ]. The objective is

to find an expression that defines the set of basis functions Φj+1(t). This will be the two-scale equation,

which for our setup takes the form of Expression 8. Two-scale equations can be seen as the central tool

in wavelet theory.
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Furthermore, the coefficients sj+1 are thought to be inner products of fj+1(t) with a dual basis Φ̃j+1,

i.e.,

sj+1 = Φ̃T
j+1 · fj+1(t),

this expression being a slight abuse of notation (inspired by its discrete analogue), denoting the vector of

inner products [. . . 〈ϕ̃j+1,k, f〉 . . .]
T .

One step of a (lifted) filter bank transforms this decomposition into another one

fj+1(t) = Φj(t) · sj +Ψj(t) ·wj,

with

sj = Φ̃T
j · fj+1(t), wj = Ψ̃T

j · fj+1(t), (5)

The functions in Ψj(t) are named primal or synthesis wavelets, as they are used upon reconstruction of

a signal. Likewise, the functions in Ψ̃j are dual or analysis wavelets, as they are used to decompose a

function into a (primal) lifting basis.

2.3 Dual basis equations

Plugging in (5) into (1) leads to the dual wavelet equations. The function fj+1(t) can be omitted, since

the expression would hold for any fj+1(t). Taking the transpose finally brings us to

Ψ̃j = Φ̃j+1,o − Φ̃j+1,e · P
T
j (6)

The two-scale equation follows similarly from (2)

Φ̃T
j = Φ̃T

j+1,e +Uj · Ψ̃
T
j

Taking transpose and plugging in (6) leads to

Φ̃j = Φ̃j+1,e · (I − PT
j U

T
j ) + Φ̃j+1,o · U

T
j (7)

2.4 Subdivision and primal basis, design of dual lifting steps

The primal basis functions follow from a different analysis, namely subdivision. We start from the

observation that ϕj,k = Φj · δk +Ψj · 0 with δk the Kronecker-delta at index k, i.e., δk,i = 0 for i 6= k
and δk,k = 1.

Feeding the inverse step with the inputs sj = δk and wj = 0 leads to sj+1,e = δk and sj+1,o =
Pj · δk, which allows to write ϕj,k = Φj+1,e · δk + Φj+1,o · Pj · δk. We can repeat the same argument

for all k, i.e., we can feed the inverse step with I = [. . . δk . . .], to arrive at the two-scale equation (also

known as refinement equation)

Φj = Φj+1,e +Φj+1,o · Pj . (8)

If the input is wj = I = [. . . δk . . .] and sj = 0, then we arrive at the wavelet equation wavelet

equation

Ψj = −Φj+1,eUj +Φj+1,o · (I − PjUj). (9)

Solving the two-scale and wavelet equations reveals the underlying synthesis basis, and thus the

properties of any reconstruction in such basis. An important numerical solver is the actual subdivision
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scheme. It consists of iterated application of the two-scale equation in order to further refine the outcome

at scale j + 1 in terms of basis functions at increasingly finer scales. That is, we write Φj or Ψj as

linear combinations of Φj+1, then Φj+2 and so on, by repeated application of (8) on its own output, and

with incrementing index j. The hope is that the scaling functions Φj “converge” to infinitely narrow

Dirac impulses, so that the sequence of coefficients in the linear combination reflect the properties of the

original basis functions Φj or Ψj .

It should be noted that the refinement for wavelet functions in Ψj involve the wavelet equation only

once, followed by an infinite refinement through the two-scale equation. The wavelet equation writes

wavelet functions as a simple linear combination of scaling functions, and thus it has no fundamental

impact on individual limiting properties of the functions, in particular on their smoothness. The ensemble

of wavelet equations at each scale affects the joint properties of the basis, such as its numerical stability

(see Section 2.5).

Besides on the smoothness of the primal basis, the dual lifting step has an immediate impact on the

sparsity of the transform. While smoothness of subdivision is hard to analyze, the sparsity is fairly easy

to control. The dual lifting is a prediction that can be designed such that certain types of smooth functions

are predicted exactly, leading to all zero detail coefficients. These smooth functions are mostly polyno-

mials: the number of dual vanishing moments is the largest integer ñ for which
∫
∞

−∞
Ψ̃T

j (t)t
ñ−1dt = 0.

It corresponds to the degree of polynomials with detail coefficients zero. All functions that can be ap-

proximated well by piecewise polynomials then decompose into wavelet coefficients that are close to

zero, except at the locations of jumps. The construction of the prediction is often based on interpolation

in the evens, for reasons of continuity that become clear in Section 3.

This construction naturally involves the location of the design points. The irregularity of the obser-

vations is thus taken into account [19]. This has the benefit that the basis functions will be grid-adaptive.

On the other hand, the two-scale equation will be grid-adaptive, and so it will be different at each scale.

This complicates the convergence analysis of the subdivision scheme. The multitude of possible refine-

ments and arbitrary grids leaves little hope for general results about smoothness of subdivision. Notable

exceptions include subdivision by cubic polynomial interpolation [4].

2.5 Design of primal lifting steps, primal moments

Wavelet basis functions are linear combinations of scaling functions, such that their integrals and possibly

also their higher moments are zero. Define the moments of the primal scaling and wavelet basis functions

as

M
(p)
j =

∫
∞

−∞

ΦT
j (t)t

pdt

O
(p)
j =

∫
∞

−∞

ΨT
j (t)t

pdt,

then we can integrate the two-scale- and wavelet equations.

Integrating (8) leads to

M
(p)
j =M

(p)
j+1,e + PT

j ·M
(p)
j+1,o (10)

Integrating (9) leads to

O
(p)
j = −UT

j ·M
(p)
j+1,e + (I −UT

j P
T
j ) ·M

(p)
j+1,o (11)
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Using the former expression to eliminate M
(p)
j+1,e from the latter, we can write

O
(p)
j =M

(p)
j+1,o −UT

j ·M
(p)
j

This can be seen as the second step in a lifting scheme whose first step is (10). The first step transforms

even fine scaling coefficients into coarse scaling coefficients, so this step is an update. The second

step defines the details, so this step is prediction. We thus have an adjoint (or conjugate) update-first

lifting scheme with prediction operator UT
j and update operator PT

j , while the original lifting schema is

a prediction-first one.

Design of the update lifting step follows often from imposing vanishing moments in the primal basis,

i.e., O
(p)
j = 0. The resulting expression M

(p)
j+1,o = UT

j · M
(p)
j can be seen as a set of equations in

unknowns Uj (for given Pj , whose design determines M
(p)
j ). Primal vanishing moments contribute

to numerical stability. For instance, if the basis functions have no zero integral (i.e., one vanishing

moment), then the zero function can be decomposed in a nontrivial way and the decomposition converges

in quadratic norm (in L2) [13]. Without zero integrals, the basis functions cannot be called real wavelets.

Such basis is known as a hierarchical basis. Nonlinear processing (such as thresholding) in a hierarchical

basis is beneficial, but only in function spaces such as Sobolev spaces that impose more smoothness than

L2 [16]. Higher order primal vanishing moments are less crucial, and may be replaced by other criteria

that promote anti-aliasing, numerical stabilization, smoothing and variance reduction.

While the update step is necessary to impose zero integrals, and hence numerical stability in L2, it

may also — inevitably — introduce other forms of numerical instability. In particular, if the grid of data

points is very irregular, showing large gaps adjacent to small gaps, then noisy fluctuations on small gaps

may be blown up in an interpolating prediction that is evaluated across a large gap. In matrix terms, the

prediction operation coefficients are unbounded. The scaling functions that come out of the subdivision

have heavy side lobes, which almost overlap with similar lobes in adjacent scaling functions. The two

adjacent scaling basis functions are far from orthogonal. An update step that creates zero integral wavelet

functions out of these, cannot undo the obliqueness of the basis. Possible remedies consist of avoiding

as much as possible strongly inhomogeneous grids for interpolating prediction. This can be done by

relaxing the strict even-odd split into a more careful partitioning [20] or by constructing the interpolating

prediction on a different subset of the evens if the closest evens to a given odd are too close to each other

[21]. Such remedies are limited in the sense that they cannot ideally take care of all possible sample

configurations.

3 Smoothing prediction

3.1 Kernel and local polynomial smoothing prediction

In order to bound the prediction coefficients, interpolation can be replaced by smoothing in the prediction.

This paper investigates the use of kernel smoothing and extensions as basic operations in the prediction

step. The prediction coefficients Pj,k,ℓ at scale j in the expression

wj,k = sj+1,2k+1 −
∑

ℓ

Pj,k,ℓsj+1,2ℓ,
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are filled in by Pj,k,ℓ = Pj,k(tj+1,2ℓ+1; tj+1,e), where

Pj,k(t; tj+1,e) =
K

(
t−tj+1,2k

hj+1

)

∑2j
i=1K

(
t−tj+1,2i

hj+1

) , (12)

where K(t) is a kernel (a positive function), hj+1 is a scale dependent bandwidth, and j+1,i is the ith
component of the grid vector tj+1. Kernel prediction coefficients constitute a convex combination of the

adjacent observations, i.e., the coefficients are positive and sum up to one. Such prediction is numerically

stable.

Kernel prediction is a special case of local polynomial prediction [9], which takes the form Pj =
[. . . P T

j (tj+1,2k+1; tj+1,e) . . .]
T where Pj(t; tj+1,e) is a row matrix of length equal to that of tj+1,e,

depending on variable t and defined by

Pj(t; tj+1,e) = T(ñ)(t)

(
T
(ñ)
j+1,e

T
Wj+1,e(t)T

(ñ)
j+1,e

)
−1

(
T
(ñ)
j+1,e

T
Wj+1,e(t)

)
. (13)

In this definition, we use T(ñ)(t) = [1 t . . . tñ−1], with ñ ∈ {1, 2, . . .} the order of the prediction, ñ− 1
being the polynomial degree. The case ñ = 1 corresponds to kernel prediction. Other notations adopted

in (13) include the vector tp, which stands for pointwise exponentiation of a vector t. This allows to

define the matrix T
(ñ)
j+1,e = [1 tj+1,e . . . t

ñ−1
j+1,e]. Finally, Wj+1,e(t) is a diagonal matrix of weights with

elements (Wj+1,e)kk(t) = K
(
t−tj,e,k
hj+1

)
. Expression (13) takes the form of a locally weighted least

squares polynomial. The expression is locally weighted in the sense that the weights depend on the

value of t through the kernel function. Centering and orthogonalization lead to numerically more stable

expressions than (13). It should be noted that general local polynomial prediction is not convex. It is,

however, possible to replace the weighted least squares formula in (13) by other constructions within the

kernel, see Section 3.7.

Kernel and local polynomial predictions have an important drawback. They are not continuous,

meaning that

lim
u→tj+1,2k

Pj(u; tj+1,e) · sj+1,e 6= sj+1,2k.

The continuity condition is essential for smooth subdivision, which explains the popularity of interpola-

tion in subdivision schemes. An example of subdivision with smoothing prediction is simulated in Figure

2.

In order to overcome the discontinuity upon subdivision, the even indexed input has to undergo the

same smoothing operation. As a consequence, the prediction has to be evaluated on both odds and evens

before being fed to all the fine scale coefficients. The detail branch of the lifting scheme in Figure 3 thus

contains all fine scale indices, while the coarse scale branch keeps only the even indices from the fine

scale set.

The scheme can be translated into the following algorithmic steps. Given the observations Yi =
f(ti) + εi, initialize the lifted smoothing transform as

JJ = {1, . . . , n} (index set)
sJ,k = Yk
tJ,k = tk
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Figure 2: Subdivision steps (1− 2− 3−∞) with smoothing prediction. We start with a single nonzero

scaling coefficient (and all wavelet coefficients are zero). The refinement thus leads to a scaling basis

function. But as the predictions (in grey, broken lines) are not interpolating, they are not close to the

immediate even neighbors, leading to a fractal like limiting function. In each step, the boxes represent

the values in the even locations, the grey shaded circles correspond to the predicted values in the odds.

In the next step of the refinement, boxes and circles together become boxes (evens).
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Figure 3: Lifted smoothing and an inverse transform. The inverse transform is not unique, because

the decomposition is redundant. The symbols (↓ 2) and (↑ 2) stand for subsampling and upsampling

respectively and are defined in the text. They emphasize a change of dimension in the signal being

filtered. In practical implementations, upsampling and subsampling are integrated into the adjacent filter

or copy operation.
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The initialization is identical to that of the classical, critically downsampled lifting scheme. Next, iterate:

• Split becomes Copy. All values are declared odds and half of them are copied into the even set.

In the flow chart, this is represented as a full copy followed by a subsampling (↓ 2) on the even

branch. Formally, we have

Jj = e = {2k|k ∈ Jj+1}

o = Jj+1.

The contrast with critically downsampled lifting lies in the definition of the odds, which is o =
Jj+1\Jj .

The number of detail coefficients at each scale is approximately twice the number in a critically

downsampled (fast) wavelet decomposition. Hence, the entire transform is overcomplete by a

factor 2. This redundancy is smaller than the log(n) factor in a nondecimated translation-invariant

wavelet transform. The overcompleteness is the price to reconciliate smoothness of reconstruction

and numerical stability.

• Predict the odds by the evens.

wj = sj+1 − Pj · (↑ 2)sj+1,e.

The symbol (↑ 2) stands for upsampling. Strictly speaking, this is adding zeros between the

elements of sj+1,e, so that the result has the same length as sj+1. The prediction matrix Pj is then

a square matrix. In practice, the size expansion from sj+1,e to sj+1 is of course incorporated into

the prediction.

• Identify sj = sj+1,e.

As the transform is overcomplete, its inverse is not unique. The most straightforward reconstruction,

depicted in Figure 2, simply inverts the prediction by sj+1 = wj + Pj · (↑ 2)sj . This already delivers

all fine scale coefficients on the odd branch. The inverse transform determines the building blocks of

the reconstructions. These building blocks do no longer constitute a basis, but a frame. As will be

illustrated in Section 3.3, finding the frame functions proceeds in exactly the same way as with the

critically decimated lifting scheme explained in Section 2. If using the correct matrices, all tools in

critically decimated lifting can be copied for the overcomplete version as well.

3.2 Kernel smoothing prediction with pre-smoothing

Given that the reconstruction uses the even branch for the prediction only, exactly the same reconstruction

still holds if the even branch is prefiltered before being used for prediction in the forward phase. Smooth-

ing before subsampling reduces the aliasing, numerical, or biasing effects of simple subsampling. The

resulting forward scheme is depicted in Figure 4, and corresponds to the following algorithm.

• Copy the full input on both even and odd branch . That is,

e = Jj+1

o = e.
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Figure 4: Lifted smoothing with pre-filtering on the evens. This can also be seen as a nonequidistant

Laplacian pyramid. The inverse transform is not unique. The option H = 0, corresponding to the

scheme in Figure 3, is still one of the solutions that lead to perfect reconstruction, independent from H̃.

For the sake of readability, the diagram hides the dependence of the filters on the scale j.

• Pre-smooth the scaling coefficients, then keep the evens, i.e., subsample. This subsampling re-

places the split in the version without pre-smoothing. The pre-smoothing or pre-filtering takes the

form

sj = (↓ 2)H̃j · sj+1.

• Predict, as before, but now the prediction is constructed on a set of pre-smoothed values.

The variant with pre-smoothing can also be seen as a nonequidistant sample version of Burt and

Adelson’s Laplacian pyramid [2]. In the literature on this pyramidal scheme, the operation (↓ 2)H̃j is

often termed reduce, while the operation Pj(↑ 2) is known as expand.

Since the inverse transform of Figure 3 can still be used, independently from the design of the pre-

smoother H̃j , that pre-smoother can easily be made non-linear or data-adaptive.

The inverse transform is, however, not unique, and in a more general form an additional filter Hj

may operate in the reconstruction from details to scaling coefficients. Those details were found by the

expression

wj =
(
I− Pj(↑ 2)(↓ 2)H̃j

)
sj+1. (14)

On the other hand, simple inversion of the prediction in analysis leads to sj+1 = wj + Pj(↑ 2)sj .
This expression provides the argument for the simple inverse transform in Figure 3, but it also imposes a

condition on Hj in Figure 4. Indeed, in the scheme of Figure 4 the reconstruction ŝj+1 is

ŝj+1 = (I + Pj(↑ 2)(↓ 2)Hj)wj + Pj(↑ 2)sj

= (wj +Pj(↑ 2)sj) + Pj(↑ 2)(↓ 2)Hjwj.

Imposing that ŝj+1 = sj+1, and filling in the simple inversion into the first half of this expression, we

find that, for any sj+1, Pj(↑ 2)(↓ 2)Hjwj = 0, where wj results from (14). This implies the perfect

reconstruction condition

Pj(↑ 2)(↓ 2)Hj

(
I− Pj(↑ 2)(↓ 2)H̃j

)
= 0. (15)

Assuming that the matrix Pj(↑ 2) has full rank, multiplication on the left with its left inverse and on the

right with Pj(↑ 2), leads to

(↓ 2)HjPj(↑ 2) =
(
(↓ 2)HjPj(↑ 2)

)(
(↓ 2)H̃jPj(↑ 2)

)
.
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The option Hj = H̃j has been proposed and elaborated in [8]. The option Hj = 0 is a trivial solution.

For any options Hj and H̃j with full rank reduce matrices, the condition above can be read as matrix

(↓ 2)H̃jPj(↑ 2) having eigenvalue 1, with geometrical multiplicity equal to its size. This implies the

condition that

(↓ 2)H̃jPj(↑ 2) = I. (16)

For a full ranked Hj to exist in the synthesis, the presmoothing and prediction in the analysis thus needs

to be biorthogonal.

3.3 Design of biorthogonal filters Pj , H̃j and Hj

The discussion in Section (3.2) has lead to two expressions, (15) and (16), for perfect reconstruction

in case the synthesis uses a presmoothing Hj . In absence of pre-smoothing at the synthesis, perfect

reconstruction is guaranteed by the lifting scheme itself. No additional condition is necessary in that

case.

Nevertheless, it makes sense to impose (16), even if Hj = 0, or at least a weaker form of that con-

dition. Expression (16) can be interpreted as conditions for H̃j , given a choice of Pj . Before motivating

the use of (16) with arguments other than perfect reconstruction involving a filter Hj , it is necessary to

elaborate on the prediction operator Pj . The prediction operator is the only one that plays a role in the

subdivision scheme. It thus determines the smoothness of the subdivision limit, and related to that,

the class of functions that can be produced by subdivision, i.e., the functions that can be represented

with all detail coefficients zero. For good smoothness properties, it is important that all constant and

linear functions are among that class [5]. Kernel smoothing does not reproduce linear functions, local

linear polynomials do. This condition can be understood as follows. A scheme aiming at smooth recon-

structions on a given grid should be able to reproduce that grid, i.e., the identical observations y = t.

Otherwise the structure of t will be reflected in the reconstruction of y. This paper thus suggests to use

local linear polynomials, rather than kernel smoothing.

Since the decomposition is overcomplete, it is not guaranteed that function that can be represented

with all details zeros, actually has all its details zero in a decomposition. The value of the details in a

decomposition depend on all operations used in that decomposition, including H̃j , which plays no role in

the analysis of the subdivision scheme. Imposing (16) is sufficient to guarantee that all functions that can

be produced by subdivision have zero details in a decomposition. Indeed, given arbitrary sj , let sj+1 =
Pj(↑ 2)sj , then sj+1 can be represented with zero detail coefficients at scale j. Those detail coefficients

follow from (14). Plugging in (16) into (14) yields a zero identity for any sj . As elaborated in Section

3.5, the expression can be weakened by imposing the zero details only for polynomials, such that the

polynomials produces by the subdivision correspond to dual vanishing moments in the decomposition.

The pre-filter in the reconstruction, Hj , can be used to provide the synthesis with primal vanishing

moments. That is, if the decomposition has lead to detailed coefficients wj at successive scales j, then

the synthesis reconstructs a function

fJ(t) = ΦL(t) · sL +
J−1∑

j=L

Ψj(t) ·wj,

where

O
(p)
j =

∫
∞

−∞

ΨT
j (t)t

pdt = 0,

11



for a designer’s choice of p. Define the scaling moments

M
(p)
j =

∫
∞

−∞

ΦT
j (t)t

pdt.

The values M
(p)
j follow from the subdivision scheme, hence from the choice of Pj . The wavelet equation

can be found by plugging in the identity matrix I into the reconstruction diagram, which leads to

Ψj(t) = Ψj(t) · I = Φj+1(t) ·
(
I− Pj(↑ 2)(↓ 2)Hj

)
.

Imposing zero moments O
(p)
j = 0 then leads to the primal moment equations

M
(p)
j+1

T(
I− Pj(↑ 2)(↓ 2)Hj

)
= 0. (17)

This equation can be used to design Hj in function of the prediction operator Pj . Afterwards, the perfect

reconstruction condition (15) can be used to find corresponding operations H̃j . Condition (15) can also

be used to translate (17) into a condition for H̃j . Indeed, the combination of (15) and (17) implies

immediately that

M
(p)
j+1

T(
I− Pj(↑ 2)(↓ 2)H̃j

)
= 0. (18)

This equation can be interpreted as follows. Obviously, H̃j has an effect on the wavelet coefficients, but

not on the wavelet basis functions. If (18) is satisfied, then the coefficients wj are such that at each scale

j, ∫
∞

−∞

tpΨj(t)wjdt = 0, (19)

independent from which synthesis is being used. This global primal moment condition ensures — thanks

to the overcompleteness of the transform and whatever primal wavelet function will follow from the

reconstruction — that the decomposition into detail functions

∆fj(t) =
∑

k

wj,kψj,k(t),

satisfies
∫
∞

−∞
∆fj(t)t

p = 0, even if
∫
∞

−∞
tpΨj(t)dt 6= 0.

The global primal moment condition (19) of the decomposition is inherited from local primal mo-

ments at the reconstruction phase through the perfect reconstruction condition (15) in way similar to how

(16) is the translation of the perfect reconstruction to the decomposition stage only. Expressions (19) and

(16) can be used to design the decomposition before the synthesis (instead of vice versa). Even if the

synthesis does not construct basis functions with vanishing moments, imposing the global vanishing

moment condition provides numerical stability of the transform.

This paper thus proposes to first investigate the subdivision through Pj and then to complete the

design of the analysis through H̃j , independent from the synthesis. The synthesis follows in the third

step of the design. In the analysis, the degrees of freedom left by the constraints of vanishing moments

and perfect reconstruction, can be used to maximize the sparsity of the decomposition. This is the topic

of the next section.
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3.4 Solving the design equations for the decomposition

Sparsity of the decomposition is promoted by a good choice of prediction operator and by sparse matrices

H̃j .

Given the prediction operator Pj , the matrix H̃j is designed to satisfy the conditions (16) and (18).

This may proceed in three steps:

1. Find a sparse solution H̃j,1 for (16). Sparsity in H̃j,1 is imposed row by row: for each row i of

H̃j,1, it is checked which rows j in the ith column of Pj contain nonzeros. A solution with as few

nonzeros as possible around column j in row i of H̃j,1 is then tried until a zero residual is obtained.

2. Find a sparse solution H̃j,0 for the homogeneous version of (16), i.e., for the condition

(↓ 2)H̃jPj(↑ 2) = 0.
The techniques for obtaining sparsity are the same as in the first step of the algorithm.

3. Find a matrix X such that H̃j = H̃j,1 +XH̃j,0 satisfies (18). Writing

A = M
(p)
j

T
Pj(↑ 2)

B = M
(p)
j

T(
I− Pj(↑ 2)(↓ 2)H̃j,1

)

O = (↓ 2)H̃j,0,

Expression (18) reduces to AXO = B, which can be solved in two stages

(a) First solve UO = B for U . Given that M
(p)
j is non-sparse and has a limited number of rows,

matrix U will not be sparse. As a matter of fact, the set of equations is typically redundant.

(b) Find a sparse solution for the underdetermined equation AX = U .

Details about the algorithm can be found in the MatlabTMimplementation accompanying this paper.

More information follows in Section 6.

3.5 Shared invariance instead of biorthogonality

The biorthogonality condition (16) is quite restrictive. This condition is sufficient, but not necessary,

to guarantee that all functions produced by subdivision are decomposed in the overcomplete transform

with all details coefficients zero. It should be noted that this condition is not fulfilled in absence of a

prefilter, i.e., if H̃j = I. In the context of subdivision with smoothing prediction, the price to pay for

this biorthogonality is, however, high. Indeed, the prefilter has to anticipate for the smoothing by doing

the opposite thing, that is, blowing up highly frequent oscillations. Such operation introduces undesired

oscillations, leading to numerical instabilities. Also, when the prediction is interpolating and the point

set is irregular, biorthogonal prefiltering may suffer from unboundedness.

As mentioned on page 11, thanks to the overcompleteness of the decomposition, it may occur that

a function is spanned by only scaling functions at a given scale, and yet a given decomposition may

lead to nonzero detail coefficients at that scale. Hence, as an alternative, zero detail coefficients can

be imposed only for those functions for which the subdivision has been really designed to reproduce.

In particular, the local polynomial prediction scheme is intended to preserve polynomials up to degree

13
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Figure 5: Lifted smoothing with pre-filtering at the decomposition and update step in both decomposition

and reconstruction.

ñ− 1. That is, given the subsampled observational grid tj+1, if sj+1,i = tpj+1,i with p = 0, 1, . . . , ñ− 1,

then
(
I − Pj(↑ 2)(↓ 2)

)
sj+1 = 0. For such input, we impose that

(
I − Pj(↑ 2)(↓ 2)H̃j

)
sj+1 = 0.

Denoting by T
(ñ)
j+1 =

[
1 tj+1 . . . t

ñ−1
j+1

]
(where t

p
j+1 is the vector with elements tpj+1,i), this is realized if

H̃jT
(ñ)
j+1 = T

(ñ)
j+1. (20)

That is, T
(ñ)
j+1 must be invariant under H̃j . Condition (20) replaces the biorthogonality condition in (16).

A straightforward construction of a sparse solution for (20) follows by realizing that Pj satisfies a similar

invariance expression, namely

Pj(↑ 2)(↓ 2)T
(ñ)
j+1 = T

(ñ)
j+1.

The prefilter can thus be constructed from the same family as the prediction, for instance, local poly-

nomial prediction may be preceded by local polynomial prefiltering of the same polynomial degree,

with possibly different bandwidths. When prefilter and prediction share invariance properties, the detail

coefficients are offsets between observations and values that have gone through two similar smoothing

operations. Such double smoothing also appears in other studies, for instance in the context of bias re-

duction [11] or robust nonparametric regression [12]. The approach through a shared invariance property

is essentially different from the biorthogonality approach, which imposes prefilters that are, in a certain

sense, the inverse of the prediction, so that both operations annihilate each other, rather than sharing any

property.

A prefilter constructed from the same family as the prediction may not satisfy the global moment

condition in (18). Let H̃j,1 be such a solution. As in Section 3.4, this solution is corrected by H̃j =

H̃j,1 +XH̃j,0, where H̃j,0 satisfies the homogeneous equation H̃j,0T
(ñ)
j+1 = 0. The null space defined by

this expression is much larger than that in Section 3.4, allowing sparser solutions.

Prefilters sharing invariance properties with the prediction are thus faster in construction, with a

sparser and numerically more stable result than biorthogonal prefilters. The price to pay is that there is

no nontrivial biorthogonal prefilter possible in the reconstruction. Such a prefilter can be replaced by

an update step, as indicated in Figure 5. This update step can be designed for local primal vanishing

moments, improving on the global primal vanishing moments by a prefilter in the analysis.

Remark

It can be observed that even without a perfect global vanishing moment, a prefilter has a stabi-

lizing effect. A simple, straightforward prefiltering could, for instance, be a Haar prefilter sj,k =
sj+1,2k−1 + sj+1,2k, or an observational grid dependent version of it (known as unbalanced Haar)

14



sj,k = (∆j+1,2k−1sj+1,2k−1+∆j+1,2ksj+1,2k)/∆j,k, where ∆j,k = (tj,k+1−2tj,k+ tj,k−1)/2. The ex-

planation for the relatively good performance of such a simple scheme is that numerical stability follows

from asymptotical global primal vanishing moments in any measure. This can be the Lebesgue measure,

but also the empirical design measure [7]. Haar prefilters do not preserve lines on arbitrary observational

grids, leading to a decomposition with more nonzeros than necessitated by the subdivision scheme.

Remark

If the reconstruction is designed to be independent from the prefilter, this prefilter can be made

nonlinear or data-adaptive at no price.

3.6 Choosing the bandwidth and other transform parameters

The multiscale local polynomial transform presented in this paper depends on four parameters: the degree

of the local polynomial, the kernel function, the bandwidth at each scale and the number of primal

vanishing moments. The first three of these parameters together determine the limiting function of the

subdivision process, hence the smoothness of the primal basis function.

The degree of the local polynomial directly defines the number of dual vanishing moments. That

number equals the degree plus one. Vanishing moments control the sparsity of the representation.

Unlike in kernel or local polynomial smoothing methods, the kernel bandwidth is not in the first

place a smoothing parameter, but rather one of the three parameters fixing the limiting function of the

subdivision process. The bandwidth has an important interpretation w.r.t. the scale in the multiresolution

decomposition. As the interobservational distances are irregular, there is no unique scale following

from the observations themselves, as would be the case in a classical wavelet analysis on equidistant

data. The bandwidth takes the role of scale at each level. Associated to the role of the bandwidth is

the property that the number of observations involved in the prediction filter may be time- or location-

varying. This property compensates for possible differences in sample rates along the observational

axis. It is reasonable to impose that the average number of observations involved in the prediction filters

remains approximately the same across the consecutive levels during the transform. The bandwidths, i.e.,

the scale of the filtering, should thus be inversely proportional to the split or subsampling rate. In case

of even-odd splitting, where roughly half of the observations are omitted at each stage, the bandwidth hj
at scale j = L, . . . , J − 1 can thus be taken to be hj = 2L−jhL, where L is the coarsest scale (often

set to be L = 0) and J is the resolution level of the observations. The latter equals J = log2(N) in

classical wavelet analysis. It is an interesting topic of further research to investigate if schemes with

wider bandwidths at fine scales for additional smoothing are beneficial. If the bandwidth behaves as

hj = qL−jhL, with 1 < q < 2, then the result after subdivision is smoother and still has finite support.

Next to the evolution of the bandwidth across scales is the choice of the finest scale bandwidth. Its

value should not be too large as it is the only opportunity to analyze fine scale effects. On the other

hand, precautions should be taken when bandwidths are small compared to the local sampling rate.

Indeed, small bandwidths cover only a limited neighboring points. The number of neighbors may then

be insufficient to comply with the number of vanishing moments imposed by the design of the transform.

Secondly, those predicting points may happen to be all, or nearly all, on the same side of the predicted

value. For local constant regression, i.e., kernel estimation, this poses no real problem, as the prediction

is always convex. For local linear or higher order regression, the effect is large prediction coefficients,

resulting in numerically unstable decompositions, especially if the prediction is followed by an update

step for primal vanishing moments.
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The software developed for this framework is equipped with a routine that allows “flexible” band-

widths so that narrow bandwidths can be extended in a way dependent on the local observational grid:

if the global bandwidth for the current scale includes too few adjacent points for stable prediction, com-

plying with the design conditions, then the algorithm searches for more neighbors left and right from the

current band.

3.7 Convex prediction coefficients

Although instabilities have already been reduced using smoothing instead of interpolation and using flex-

ible bandwidths, further improvement is necessary by imposing convex prediction coefficients. Convex

coefficients follow automatically in the cases of linear interpolating prediction and constant local least

squares prediction. In general local least squares prediction, and given a flexible bandwidth, as discussed

above in Section 3.6, we impose that all prediction coefficients are positive. Since the first dual vanishing

moment requires them to sum up to one, the positivity condition implies convexity. Local polynomial

regression using least squares with the positivity condition leads to a non-convex combinatorial opti-

mization problem, namely, find β̂ that minimizes

‖Wj+1,e(t)(Y − Tj+1,eβ)‖

for β satisfying the conditions (for i ∈ e)

∂(T(ñ)(t)β)

∂Yi
≥ 0.

The prediction Pj(t; tj+1,e) = T(ñ)(t)β̂ replaces (13). The software written for this paper finds a

local optimum for this problem. As the neighborhoods for the prediction of a given point are local, the

complexity of the optimization problems remains under control.

4 Illustrations and simulations

4.1 The frame functions

As the proposed signal decomposition is redundant, the building blocks do not constitute a basis, but

rather a frame. Figure 6 compares scaling functions from subdivision with interpolating polynomial

predictions and scaling functions from subdivision with local polynomial smoothing as prediction step.

For the interpolating subdivision, cubic polynomials were used. The resulting scaling function is smooth,

corresponding to theoretical results [4], but, depending on the grid of sample locations, the function may

show heavy side lobes. This is due to the fact that every prediction involves two neighbors on the left and

two on the right. Such an approach does not weight the importance of the neighbors according to their

distance. Using kernel (local constant) smoothing as prediction is insufficient to capture the structure of

the grid. Indeed, as local constants cannot reproduce the function y(t) = t, it can be expected that the

locations ti have an effect on the decomposition.
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Figure 6: Scaling functions for (respectively) cubic interpolation prediction, local constant (kernel)

smoothing prediction and local linear smoothing prediction.

4.2 The analysis or decomposition

The frame functions are determined by the reconstruction, and thus by the refinement or subdivision

scheme. As the proposed representation is overcomplete, the decomposition into this frame is not unique.

In particular, the prefilter step is subject of design. As discussed in Sections 3.3 and 3.5, biorthogonal

design on irregular grids is time consuming and restrictive, leading to decompositions that are non-

sparse, unstable, or both. Hoewever, for prefilters with shared invariance properties as well, the current

implementation of the design methods in Sections 3.4 and 3.5 is not always successful in combining

the properties (mostly dual vanishing moments) with sparse and stable preservation of the global primal

vanishing moments. Since an update step has already been proposed as an alternative for a biorthogonal

pair of prefilters and prediction, this update step can also be used to overcome the inconveniences of

prefilter that violates the global primal moment condition.

4.3 A denoising example

The following illustrations and simulations were performed on the test signal

f(t) =





sin(9t)
4
4(0.62 − t)2/(0.62 − 0.4)2

8(1−
√
1− (t− 0.62)2/(0.7 − 0.62)2)

8(1−
√
1− (0.85 − t)2/(0.85 − 0.7)2)

2 + 9(t− 0.85)

for t ∈ [0, 1] with transition points 0.3 ; 0.4 ; 0.62 ; 0.7 ; 0.85. The signal is sampled at n = 2067
locations ti which were generated as (ordered) independent realizations of uniform random variables on

[0, 1]. Additive normal (Gaussian) noise ε is added to this sample, to observe y = f + ε in a signal-to-

noise ratio of SNR = 20 log10 (‖f‖/‖ε‖) = 10dB.
Although the observational grid is statistically uniform, Figure 2 in [21] illustrates that the irregular-

ities pose a challenge in finding a stable and smooth reconstruction: a reconstruction from a transform

that ignores the irregularities is stable but wiggly, while a grid-adaptive critically sampled decomposi-

tion is unstable. Figure 8 compares the noise reduction capacities of several options in a nonequispaced

Laplacian pyramid scheme. All methods thus adopted the factor 2 redundancy of the pyramid, includ-

ing the interpolating prediction schemes, were such redundancy is not strictly necessary. The choice

for redundant interpolating prediction is motivated by fairness of comparison, as reconstruction from

overcomplete schemes may result in additional smoothing. The kernel used in the local polynomial
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Figure 7: Test signal and noisy sample. Sample size is n = 2067.

smoothing is the cosine function, i.e., K(t) = (π/4) cos(πt/2) for −1 ≤ t ≤ 1. Experiments (not

displayed in the figures) suggest that prefilters in an interpolating scheme have relatively little impact.

The linear interpolating prediction with two-taps update of Figure 8(a), which the nonequispaced

extension of the Cohen-Daubechies-Feauveau (CDF) wavelets with 2 primal and 2 dual vanishing mo-

ments, performs quite well in the sense of numerical stability: the estimation is fairly unbiased. Nev-

ertheless, smoothness of this decomposition is limited, as it only reproduces straight lines. Trying to

increase the smoothness, using cubic interpolating prediction, we arrive at 8(b). This decomposition is

no longer an extension of a member of the CDF family. The result is smoother indeed, but peaks are

less sharply reconstructed, and above all, the reconstruction shows unpleasant blobs, due to numerical

instabilities. These blobs may be more serious in other settings than the one shown in the figure. Figures

(c) and (d) compare local constant and local linear predictions. The local constant one clearly struggles

with the irregularity of the point set. Both schemes show a remarkable and unacceptable vertical shift,

due to the lack of local primal moments, i.e., building blocks with zero integral. This is remedied by

adding an update step in Figures (e) and (f). Both Figures also introduce a local linear presmoothing.

The difference between (e) and (f) is that in (f) the smoothing operations are constraint to have convex

coefficients, which leads to a smoother and more stable result, with sharper reconstructions of the peaks.

Figure 9 summarizes the result of a simulation study of a hundred times 2067 noisy observations

from the signal in Figure 7 (again with SNR = 10dB). The boxplot represents the observed pairwise

differences in output signal-to-noise ratios of the two most stable routines in the previous discussion,

namely convex local linear smoothing prediction with presmoothing on one hand and linear interpolating

prediction on the other hand, both methods equipped with a two-taps update for local primal vanishing

moments. These methods correspond, respectively, to the results displayed in Figures 8(f) and (a). The

mean output SNR values are 21.45dB for the linear interpolating prediction method and 22.30dB for the

convex local linear smoothing prediction with presmoothing.

5 Concluding discussion

This paper has introduced the idea of multiscale smoothing, by plugging in well-known statistical meth-

ods of kernel smoothing and local polynomial smoothing into a lifting scheme. The decomposition can

be applied to irregularly observed data, with a sample size not necessarily dyadic (a power of two). As

explained in the paper, when smoothing replaces interpolation as basic lifting step, a slight redundancy

in the transform is necessary to deal with problems of discontinuity. This overcompleteness is of factor

2, which is far below the redundancy factor in a classical non-decimated wavelet transform. The scheme
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(a) (b)

(c) (d)

(e) (f)

Figure 8: Denoising the observations from Figure 7. (a) Using linear interpolating prediction and two-

taps update. (b) Using cubic interpolating prediction and two-taps update. (c) Using local constant

smoothing prediction, no update, no prefilters. (d) Using local linear smoothing prediction, no update,

no prefilters. (e) Using local linear smoothing prediction, two-taps update, linear smoothing prefilter. (f)

Using convex local linear smoothing prediction, two-taps update, linear smoothing prefilter.

−1 0 1 2 3 4

Figure 9: Boxplot of the difference in output SNR between convex local linear smoothing prediction with

presmoothing and linear interpolating prediction, both methods with two-taps update. The population of

differences has a positive mean, indicating that local linear smoothing is superior to linear interpolation

as prediction method.
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can be seen as a nonequispaced version of a Laplacian pyramid. The paper discusses an extension of

the prefiltered analysis and reconstruction in such a scheme, thereby illustrating that some options in

the regular sample case proposed in [8] become problematic in the irregular sample case. Some of the

benefits from such prefiltering are better realized by an additional update step, leaving more degrees of

freedom to the design of fast prefilters. Moreover, update steps allow for the construction of building

blocks with zero integrals, i.e., without intercept or DC component.

Using smoothing as basic operation in the subdivision or refinement process behind a wavelet trans-

form offers several advantages and perspectives. Compared to interpolation as basic design tool, smooth-

ing allows easier control on the numerical condition of the refinement process. No interpolation beyond

simple polylines performs with good numerical condition on irregular grids. Next to interpolation in a

lifting scheme, wavelets on irregular point sets could also be constructed by elaboration from existing

two-scale equations in such general settings. Examples include B-splines [5]. As far as experiments

allowed to conclude, these constructions equally suffer from numerical problems on irregular point sets.

The reason could be called a “mixture of scales”, meaning that irregular point sets typically show an

intermittent density of observations, which conflicts with the basic idea of a multiscale analysis, where

each level is characterized by its scale of operations.

Smoothing as basic operation suffers less from intermittent densities of observations, but it requires

redundancy for the sake of smooth reconstructions. It could be conjectured that the combination of

smooth and stable basis functions in a critically downsampled wavelet transform on a regular dyadic grid

is an exceptional coincidence. Orthogonal (thus stable) constructions on irregular data structures exist,

such as on graphical data [17], but these do not consider any sort of smoothness on these graphs. The

combination of smoothness and stability seems to require overcompleteness.

Using smoothing as basic operation in subdivision has another advantage compared to interpolating

refinement. The output of the smoothing operation can be used in a refinable measure of local smooth-

ness. In particular, as local linear polynomial smoothing allows to estimate the local derivative of the

underlying noise-free function, a parallel multiscale analysis for the derivatives can be constructed for

using in estimation and hypothesis testing.

The methodology of this paper can also be used for the design of Laplacian pyramid schemes for

the construction of multiscale versions of a wide variety of data analysis techniques, including nonlinear

methods, or methods adapted for non-Gaussian data and so on.

6 Accompanying software

The methods described in this paper have been implemented in MatlabTMroutines that are available as

part of a software package called ThreshLab. ThreshLab can be downloaded from http://homepages.ulb.ac.be/∼
After installation, type illustrateRWT 2GHtPU or help illustrateRWT 2GHtPU for getting

started with multiscale local polynomial lifting.
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