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Abstract

This paper investigates two types of results that support the use of generalized cross validation

(GCV) for variable selection under the assumption of sparsity. The first type of result is based on

the well established links between GCV on one hand and Mallows’s Cp and Stein Unbiased Risk

Estimator (SURE) on the other hand. The result states that GCV performs as well as Cp or SURE in

a regularized or penalized least squares problem as an estimator of the prediction error for the penalty

in the neighborhood of its optimal value. This result can be seen as a refinement of an earlier result

in GCV for soft thresholding of wavelet coefficients. The second novel result concentrates on the

behavior of GCV for penalties near zero. Good behavior near zero is of crucial importance to ensure

successful minimization of GCV as a function of the regularization parameter. Understanding the

behavior near zero is important in the extension of GCV from ℓ1 towards ℓ0 regularized least squares,

i.e., for variable selection without shrinkage, or hard thresholding. Several possible implementations

of GCV are compared with each other and with SURE and Cp. These simulations illustrate the

importance of the fact that GCV has an implicit and robust estimator of the observational variance.
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1 Introduction

The theme of this paper is the application of Generalized Cross Validation (GCV) in the context of sparse

variable selection. GCV is an estimator of the predictive quality of a model. Optimization of GCV can

thus be used as a criterion to optimize the number of selected variables with respect to the predicting

the observations. The size of the selected model can be seen as a smoothing parameter that balances

closeness of fit and complexity. Closeness of fit is measured by the residual sum of squares (denoted as

SSE). The complexity of the model, measured by the number of selected variables or an ℓp norm of the

estimators under the selected model, can be understood as a penalty.

Although GCV has been proposed in quite some situations of sparsity [16, 13] and although it has

been analyzed for sparse data [9], the method still needs further theoretical and practical investigation

[1]. More specifically, this paper demonstrates that the success of GCV in selecting from sparse vectors

rests, not just on some asymptotic optimality, but actually on the combination of two asymptotic results.

One result, stated in Proposition 1, focusses on the behavior of GCV in the neighborhood of the optimal

smoothing parameter. This value of interest minimizes the risk or expected loss, i.e., the expected sum

of squared errors. The result in Proposition 1 then states that, if the data are sufficiently sparse and if

this optimal smoothing parameter performs asymptotically well in identifying the significant variables,

then the GCV score near the optimal smoothing parameter comes close to the score of Mallows’s Cp

[11] or Stein’s Unbiased Risk Estimator (SURE) [12, 5]. The result is an extension and generalization of

previous analyzes [9].

Unlike Mallows’s Cp or SURE, GCV does not assume knowledge of the variance of the observational

errors. Even in the simple signal-plus-noise model, the implicit variance estimation in GCV is clearly

superior to a variance dependent criterion such as Cp or SURE, equipped with a robust explicit variance

estimator, as illustrated in Section 5.3.

A second result, stated in Proposition 2, is necessary to ensure that GCV has no global minimum for

the full model, i.e., the zero penalty model including all variables. Acknowledgement of the importance

of the behavior of GCV near zero is crucial in the extension of GCV beyond its current domains of

application. These applications are mostly limited to linear methods [15], typically defined by as an ℓ2

regularized least squares regression problem, and to ℓ1 regularized least squares regression problems,

i.e., the lasso (least absolute shrinkage and selection operator) [13]. For ℓ0 regularized problems, the

classical definition of GCV cannot be used, because Proposition 2 is not satisfied. A solution for this

problem is provided in Section 4, Expression 18.

From the more practical point of view, this paper discusses the remarkable robustness of GCV against

violation of the sparsity assumption. We can even use GCV as a variance estimator of an i.i.d. normal

vector in the presence of far more than 50% outliers.

This paper is organized as follows. In Section 2 the objectives for the variable selection are stated:

the goal is to find a selection that minimizes the prediction error. Definitions are given, together with

generalities about unbiased estimators of the prediction error. Section 3 defines GCV, and states an
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asymptotic result that links GCV to the unbiased estimators of the prediction error. Section 4 states

a result about the behavior of GCV for selections close to the full model. The novelty, necessity and

consequences of the result are discussed. The working of the resulting variable selection procedures is

illustrated in Section 5. Comparison of GCV is made with Stein Unbiased Risk Estimator. The main

conclusions are summarized in Section 6. Section 7 contains the proofs of Propositions 1 and 2. Section

8 describes this paper’s accompanying software that can be downloaded from the web. The routines

allow reproduction of all illustrations used in the text.

2 Unbiased estimators of the prediction error

Consider the classical observational model

Y = K · β + ε = y + ε, (1)

where observations Y , noise-free response data y and i.i.d. errors ε are all n-dimensional real vectors,

while the covariates β ∈ Rm, and the design matrix K ∈ Rn×m. In high-dimensional problems, it is

typical to have that m ≫ n.

The vector β is sparse, meaning that most of the variables are zero. The objective is to find and

estimate the nonzero values. This presentation of the problem implies that the true model is a subset of

the full model.

We investigate estimators that minimize the regularized sum of squared residuals

β̂λ,p = argmin
β

[
SSE(β) + λ‖β‖pℓp

]
, (2)

where the sum of the squared residuals e = Y − Kβ̂ for estimator β̂ is defined as SSE(β̂) = ‖e‖2ℓ2 .
The regularization in (2) can be interpreted as a constrained optimization problem. This paper restricts

discussion to the cases p = 0 and p = 1, the latter corresponding to the lasso. If p = 0, then ‖β‖0ℓ0 =

#{i ∈ {1, . . . ,m}|βi 6= 0}, at least if we set 00 = 0. The estimator is then the minimizer of SSE(β)

under the constraint that the number of nonzeros is bounded by a value n1. The problem of choosing an

appropriate value of n1 is equivalent to choosing the best penalty or smoothing parameter λ. It should

be noted that the parameter
√
λ reduces to a hard threshold if K = I (the identity matrix) and p = 0 and

λ/2 reduces to a soft threshold if K = I and p = 1.

In this paper, the value of the smoothing parameter is optimized with respect to the prediction error.

We can write

PE(β̂λ,p) =
1

n
E‖ŷλ − y‖2 = σ2 +

ESSE(β̂λ,p)

n
− 1

n
2E(εT eλ). (3)
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Following [17, 18] we define the degrees of freedom for ŷλ as

νλ,p =
1

σ2
E
[
εT (ε− eλ)

]
= n− E(εTeλ)

σ2
, (4)

then we have

PE(β̂λ,p) =
ESSE(β̂λ,p)

n
+

2νλ,p
n

σ2 − σ2. (5)

This expression is the basis for estimating the prediction error. The term ESSE can be estimated in a

straightforward way by SSE. The variance σ2 is assumed to be known or easy to estimate. The estimation

of the degrees of freedom depends on the model and on the class of estimators under consideration. In all

cases and further on in the article, x denotes a binary vector of length m where a one stands for a selected

variable and a zero for a non-selected variable. Denote by Kx the submatrix of K containing all columns

of K corresponding to the selected variables in x. Similarly, βx stands for the nonzero elements in β.

• Consider the least squares projection estimator on a submodel Kx, where the selected set x is

independent from the observations. It is well known that in this case the degrees of freedom

are νx = n1, where n1 is the number of nonzeros in the selection x, at least if Kx has full

rank. (Otherwise, νx = rank(Kx).) As the selection x is not driven by p and λ, the degrees of

freedom are not indexed by these parameters. Nevertheless νx = n1 can be substituted into (5).

Then, omission of the expected values, followed by a normalization or Studentization, leads to the

classical expression of Mallows’s Cp(n1) = SSE/nσ̂
2 +2n1/n− 1. If the projection Px onto Kx

is nonorthogonal, then we find νx = Tr(Px).

• In a penalized regression problem, the number of nonzeros N1,λ depends on the regularization pa-

rameter λ and on the observations. For the lasso, i.e., p = 1, it can be proven that νλ,1 = E(N1,λ).

The result holds for any design matrix K , i.e., for both low dimensional [18] and high dimensional

[14] data. The proofs motivate its use in the Least Angle Regression (LARS) algorithm [6] for

solving the lasso problem. In the signal-plus-noise model, where K = I , lasso reduces to soft

thresholding. Within this framework, the elaboration of (5) with ν̂λ,1 = N1,λ is known as Stein’s

Unbiased Risk Estimator (SURE) [5].

• In the ℓ1 regularized case with normal errors, the degrees of freedom depend on β only implicitly,

through E(N1,λ), which is easy to estimate. In the ℓ0 case, even for normal errors, the dependence

of νλ,0 on β would be explicit, and therefore much harder to estimate. In the case where K = I , a

quasi unbiased estimation is [7]:

ν̂λ,0 = N1,λ + n

∫ λ

−λ

(
1− u2

σ2

)
fε(u)du. (6)

Extensions towards general K are possible [7].

4



3 The efficiency of Generalized Cross Validation

While GCV can be derived from “classical” (ordinary) leave-out-one cross validation, the analysis in this

paper is based on its link with the Mallows’s Cp estimation of the prediction error. For any value of p,

the non-standardized Cp estimator takes the form

∆λ,p =
1

n
SSE(β̂λ,p) +

2νλ,p
n

σ2 − σ2. (7)

For GCV, this paper uses the following definition

GCVp(λ) =
1
nSSE(β̂λ,p)
(
1− νλ,p

n

)2 , (8)

which, in practical use, is evaluated by plugging in one of the estimators ν̂λ,p proposed in Section 2 for

νλ,p. The effect of this substitution is limited, as discussed in Section 7.4. The link between GCV and

unbiased estimators of the prediction error follows directly from the definitions

GCVp(λ)− σ2 =
∆λ,p −

(νλ,p
n

)2
σ2

(
1− νλ,p

n

)2 . (9)

Slightly further developed, this becomes

GCVp(λ)− σ2 −∆λ,p

∆λ,p
=

2νλ,p
n −

(νλ,p
n

)2
(
1− νλ,p

n

)2 −
(νλ,p

n

)2
(
1− νλ,p

n

)2 · σ2

∆λ,p
. (10)

For this expression, the following convergence result can be established.

Proposition 1 Let Y observations of the model in (1), where the number of observations n → ∞.

Suppose that the survival function of the errors is bounded by 1−Fε(u) ≤ L · exp(−γu) for constants γ

and L. Denoting N1,λ for the number of variables in the model and n1,λ = E(N1,λ), we assume further

that there exists a sequence of non-empty sets Λn so that supλ∈Λn
n1,λ log

2(m)/n → 0 for n → ∞. An

almost overlapping assumption is made for the degrees of freedom, supλ∈Λn
νλ,p = o(n) as n → ∞.

Finally, we assume that the estimator β̂λ,p has the design coherence property, specified in Assumption 1.

Under these assumptions, the relative deviation of GCV from ∆λ,p converges to zero in probability.

More precisely, denote

Qλ =

∣∣GCVp(λ)− σ2 −∆λ,p

∣∣
∆λ,p + Vn

, (11)

where Vn is a random variable, independent from λ, and defined by

Vn = max

(
0, sup

λ∈Λn

(PE(β̂λ,p)−∆λ,p)

)
.
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Then, for n → ∞, supλ∈Λn
Qλ

P→ 0.

Proof. See Section 7.2.

Assumption 1 (Design coherence property) Consider a sequence of models (1), indexed with the sam-

ple size n, i.e., Yn = Knβn + εn. Let Kn,i denote the ith row of Kn. Let {β̂n,λ = 1, 2, . . .} be a

sequence of estimators, depending on a parameter λ ∈ Λn. Let Σn,λ be the covariance matrix of β̂n,λ

and Dn,λ the diagonal matrix containing the diagonal elements of Σn,λ, i.e., the variances of β̂n,λ. Then

the sequence of estimators is called design coherent w.r.t. the sequence of parameter sets Λn, if there

exists a positive c, independent from n, so that for all λ ∈ Λn,

Kn,iΣn,λK
T
n,i/Kn,iDn,λK

T
n,i ≥ c. (12)

Section 7.1 gives an interpretation of this assumption.

The result in Proposition 1 can be understood as follows. The curve of GCVp(λ) − σ2 is a close

approximation of the experimental curve of ∆λ,p, where both curves are functions of λ ∈ Λn. For use

in the forthcoming Corollary 1, the quality of the approximation is expressed in a relative fashion, so

that when E(∆λ,p) = PE(β̂λ,p) tends to zero for n → ∞, the approximation error vanishes faster

in probability. As explained by Corollary 1, this behavior allows us to use the minimizer of GCV as

an efficient estimator of the optimal λ. The argument of Corollary 1 requires, however, that the relative

approximation error is defined with a denominator that is a vertical shift of ∆λ,p, so that this denominator

has the same minimizer as ∆λ,p. Therefore, the definition of Qλ in (11) has ∆λ,p+Vn in the denominator

rather than E(∆λ,p). A second reason for using ∆λ,p + Vn in the denominator of (11) lies in the proof

of Proposition 1. This proof hinges on the close connection between the experimental curves GCVp(λ)

and ∆λ,p in (10). The value of Vn is the smallest vertical shift so that ∆λ,p + Vn majorizes E(∆λ,p) for

all λ ∈ Λn. Its value guarantees that ∆λ,p + Vn ≥ ∆λ,p and also that ∆λ,p + Vn ≥ E(∆λ,p). Both

properties are being used throughout the proof of Proposition 1. With E(∆λ,p) as a lower bound, the

denominator is also protected against occasionally near-zero or even negative values of ∆λ,p.

Corollary 1 thus states that estimating the minimizer of ∆λ,p by the minimizer of GCVp(λ) may

result in a different value for λ, but both, random, values have asymptotically the same quality in terms

of ∆λ,p, shifted towards its expected value.

Corollary 1 Let λ̂∗
n = argminλ∈Λn

∆λ,p in the observational model (1) and ̂̂λn = argminλ∈Λn
GCVp(λ),

with Λn defined in Proposition 1, then it holds that

∆̂̂λn,p
+ Vn

∆
λ̂∗
n,p

+ Vn

P→ 1, (13)

with Vn as in Proposition 1.
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Proof. From the definition of Qλ in (11), we have for any λ ∈ Λn,

−Qλ(∆λ,p + Vn) ≤ GCVp(λ)− σ2 −∆λ,p ≤ Qλ(∆λ,p + Vn),

which is of course equivalent to

(1−Qλ)(∆λ,p + Vn) ≤ GCVp(λ)− σ2 + Vn ≤ (1 +Qλ)(∆λ,p + Vn).

Since ̂̂λn minimizes GCVp(λ), we have

(1−Q̂̂λn

)(∆̂̂λn,p
+ Vn) ≤ GCVp(̂̂λn)− σ2 + Vn ≤ GCVp(λ̂

∗
n)− σ2 + Vn ≤ (1 +Q

λ̂∗
n
)(∆

λ̂∗
n,p

+ Vn),

which leads to

1 ≤
∆̂̂λn,p

+ Vn

∆
λ̂∗
n,p

+ Vn
≤

1 +Q
λ̂∗
n

1−Q̂̂λn

,

where the upper bound summarizes the outer inequalities above, while the lower bound follows from the

fact that λ̂∗
n minimizes ∆λn,p. From the convergence of the sequences Q

λ̂∗
n

and Q̂̂λn

and application of

Slutsky’s theorems we conclude that

(
∆̂̂λn,p

+ Vn

)
/
(
∆

λ̂∗
n,p

+ Vn

)
convergences in distribution to 1,

which is equivalent to convergence in probability since the limiting variable is a constant.

Remark 1 Proposition 1 relates GCV to ∆λ,p. This relationship is tight in the sense that it holds for

every sample separately, not just for the expected values. This is in contrast to the unbiasedness property

that links the expected value of ∆λ,p to the prediction error PE(β̂λ,p). It can easily be verified that the

link between ∆λ,p and PE(β̂λ,p) cannot be stated without the expected value. On the other hand, the

proof of Proposition 1 could easily be weakened to an asymptotic optimality for the expected curves.

Such a proof would roughly correspond to the first half of the proof of Proposition 1, and reduce to (still)

an extension of earlier results [9]. These earlier results covered the simple sparse signal-plus-noise case.

The extension of Proposition 1 is thus twofold: the result is stronger and applies to sparse regression with

a general design matrix K .

Remark 2 The sequence of sets Λn must satisfy supλ∈Λn
νλ,p/n → 0 as n → ∞. This excludes

sequences of λ that would lead to non-sparse selections, i.e., where νλ,p/n would not vanish. From (10),

it can be understood that without νλ,p/n tending to zero, the relative error of GCVp(λ) cannot possibly

vanish. If the relative size of the true model compared to the sample size does not tend to zero, it cannot

be found with increasing efficiency using GCV. Models with large values of νλ,p correspond to small

values of λ. In typical practical applications, the construction of an appropriate sequence of sets Λn

poses no problem. For instance, in the Gaussian signal-plus-noise model, it is known that the optimal

value for λ lies within a constant from the universal value λn,univ =
√
2 log(n)σ [8]. The sets Λn can

thus be chosen to be Λn = [γλn,univ,∞), with γ < 1, or Λn = [λn,univ−κ,∞). Although the prediction
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error of large models selected by small values of λ cannot be estimated by GCV in a consistent way and

although large models are not of direct interest in a problem of sparse variable selection, it is important

that the GCVp(λ) curve behaves appropriately for these cases. This is explained in Section 4. More

interpretation of the assumptions in Proposition 1 follow in Section 7.1.

4 The behavior of GCV near zero penalties

In spite of the asymptotically good behavior of GCV in the neighborhood of the penalty value minimizing

the prediction error, the practical application of GCV may suffer from undesired effects outside that

neighborhood. In particular, uncareful definition of GCV may result in an expression that tends to zero

for zero penalties, i.e., for the full model. That zero value is then a global minimum. This global

minimum is likely to hide the true minimum of the prediction error, or at least may hinder the numerical

implementation of what becomes a delicate local minimization routine. Examples are given in Figure 4.

This section first formulates a result for the use of GCV in ℓ1 regularized least squares variable

selection, i.e., lasso, in Proposition 2. The proposition states that for lasso, GCV behaves nicely near

zero values of λ. Next, the section investigates the behavior of GCV for small values of λ in the case

of best n1,λ-term least squares estimation, this is ℓ0 regularized variable selection. The application of

GCV as defined in (8) is concluded to be problematic, due to the lack of a result like Proposition 2 for

ℓ0 penalties. This motivates the introduction of an alternative definition of GCV for hard thresholding in

(18).

Proposition 2 Given the observational model in (1), with i.i.d. errors, suppose that rank(K) = n with

n ≤ m. Also suppose that the cumulative distribution function of the errors is continuous. Let β̂λ,1 be

the minimizer of the penalized sum of squared residuals (2) with p = 1, and consider GCV as defined in

(8), then we have

lim
λ→0

E [GCV1(λ)] = cn > 0. (14)

In particular, in the signal-plus-noise model, where K is the identity matrix, we have, for n → ∞,

cn → 1

4f2
ε (0)

, (15)

assuming a boundedly differentiable error density function fε(u) and assuming that sparsity allows one

to write that ‖β‖1 = o(n). In the case of signal plus normal noise, this becomes

cn → σ2π/2. (16)

Proof. See Section 7.3
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Remark 3 The result of Proposition 2 confirms the conclusions in Remark 2. Although a sufficiently

large value of cn may prevent the origin, λ = 0, from being a local minimum of the GCV1(λ) curve, the

value does not correspond to what could be expected from extrapolation of the result in Proposition 2.

In particular, for the signal-plus-noise model, the value of cn in (15) is found to be

cn = lim
λ→0

E [GCV1(λ)] 6= lim
λ→0

E(∆λ,1) + σ2 = 2σ2.

Therefore, Proposition 1 cannot possibly hold for λ close to zero. This motivates the assumption that

supλ νλ,p/n → 0 for the sets Λn under consideration. We thus find that GCVp(λ) works fine in the

region of interest Λn, while the behavior near λ = 0 is just good enough not to disturb a successful

application of the method.

As can be seen from the proof in Section 7.3, the good behavior of GCV1(λ) is due to the fact that for

λ → 0, the numerator and the denominator tend to zero at the same rate. The remainder of this section

investigates the numerator and the denominator of GCV0(λ). First, in the case of n > m, the system

Kβ = Y has no exact solution. As a consequence, for any p, neither the numerator, nor the denominator

of E[GCVp(λ)] tend to zero. For instance, ℓ0 penalized SSE works fine with GCV when n > m. In

other words, good behavior of GCV for models close to the full model is guaranteed if that full model

can still be estimated. This may even be the case for rather complex models, as long as the number of

observations is large enough; see [10, p.668], where m < n− 1.

For high-dimensional data, with full model complexities far beyond the sample size, results as Propo-

sition 2 are crucial. For instance, when n ≤ m, GCV as defined in (8), does not work with ℓ0 penaliza-

tion. Indeed, restricting discussion in the remainder of this section to the signal-plus-noise model, the

numerator becomes
1

n
ESSE(β̂λ,0) =

1

n

n∑

i=1

∫ λ

−λ
u2 fYi

(u) du ≍ λ3.

In the denominator νλ,0 can be approximated by Eν̂λ,0, defined in (6), for which it holds that

1− Eν̂λ,0
n

= 1− EN1,λ

n
−
∫ λ

−λ

(
1− u2

σ2

)
fε(u)du

=
1

n

n∑

i=1

∫ λ−βi

−λ−βi

fε(u)du−
∫ λ

−λ
fε(u)du+

∫ λ

−λ

u2

σ2
fε(u)du

=
1

n

∑

i∈S1

[∫ λ−βi

−λ−βi

fε(u)du−
∫ λ

−λ
fε(u)du+

∫ λ

−λ

u2

σ2
fε(u)du

]
+

n− s1
n

·
∫ λ

−λ

u2

σ2
fε(u)du.

In the last line, S1 stands for the set of indices for which βi 6= 0 and s1 = #S1. The first term in the

last line is of order O(λ) while the second term is of order O(λ3). As a consequence, the theoretical
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behavior of GCV is

E[GCV0(λ)] ≍
λ3

(O(λ) +O(λ3))2
≍ λ → 0,

but, depending on the number and values of the nonzeros in β, the second term in the denominator

may dominate up to very small values of λ, causing E[GCV0(λ)] to show a large local maximum right

after λ = 0, see Figure 4(b). The presence of this local maximum near the origin (threshold zero)

prevents the zero GCV value in the origin from disturbing the local minimization routine near the optimal

threshold value. On the other hand, the maximum itself may have an influence on the position of the

subsequent local minimum. Moreover, the presence of the local maximum is uncertain. The instability

is further enhanced by the fact that Eν̂λ,0, defined in (6), requires knowledge or estimation of σ2. Such

an estimated error variance could be

σ̂MAD = median|Y |/Φ−1
1 (3/4) ≈ median|Y |/0.6745. (17)

The variance estimation may further affect the local maximum and minimum of the GCV curve.

In order to stabilize the estimation, and still working within a signal-plus-noise model, we can use

the identity (1/n)SSE(β̂λ,1) = (1/n)SSE(β̂λ,0)+λ2N1,λ/n to rewrite (7) as ∆λ,0 = (1/n)SSE(β̂λ,1)+

(2νλ,0/n)σ
2−σ2−λ2N1,λ/n. The first three terms can be approximated in a stable way by a generalized

cross validation, leading to an expression for GCV for hard thresholding, i.e., ℓ0 constrained least squares

in a signal-plus-noise model.

GCVH(λ) =
1
nSSE(β̂λ,0) + λ2N1,λ

n(
1− νλ,0

n

)2 − λ2N1,λ

n
, (18)

where νλ,0 can be estimated, nearly unbiasedly, as in (6), where the variance σ2 is estimated by σ̂2 =

SSE(β̂λ,0)/n. This pilot estimator is sufficiently accurate near the optimal value of λ.

5 Illustrations and comparative study

This section discusses alternatives for the implementation of GCV and compares the performances of

GCV with SURE.

5.1 GCV for solving sparse systems with ℓ1 penalties

Figure 1(a) presents a typical GCV curve for the outcome of the minimization problem in (2) with p = 1

as function of parameter λ. The observations come from the model of (1), where for the simulation, β

is generated from a zero inflated Laplace (double exponential) distribution, i.e., P (βi = 0) = 1− q and

βi|βi 6= 0 ∼ Laplace(a), where X ∼ Laplace(a) ⇔ fX(x) = (a/2) exp(−a|x|). The observational

errors are assumed to be normally distributed. Such a needle-and-haystack model is typical in a Bayesian
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description of problems involving sparsity. In the simulation, the parameters are set to be a = 1/5,

q = 0.01, σ = 1. The number of variables equals m = 3000, of which approximately mq = 30

are nonzero, while the number of observations equals n = 1000. The design matrix K is also generated

artificially. Obviously, in real problems, many types of K may occur, each with their own characteristics.

Covering all sorts of problems would be far beyond the scope of this paper. The simulation in this paper

constructs a band limited matrix (with bandwidth equal to 20), with randomly chosen entries within

the band. The main motivation for this type of matrix has been the computational feasibility. Solving

the lasso problem (2) with p = 1 for arbitrary, full matrices is computationally intensive, whether the

implementation is based on direct methods such as LARS [6] or on iterative routines such as iterative

soft thresholding [3]). The simulation presented here adopts iterative soft thresholding as solver of (2).

Figure 1(b) depicts the comparative plots for the same simulation setup, except for the degree of sparsity,

which equals q = 0.05 instead of q = 0.01. Since the vector β is less sparse, the values of νλ,1 in the

region of interest are larger. As a consequence, the approximation error Qλ of GCV1(λ)−σ2 w.r.t. ∆λ,1

in (10) and (11) is larger. Fortunately, the approximation error is a slowly fluctuating curve as a function

of λ. The result is that GCV1(λ) − σ2 does not approximate the value of ∆λ,1 (SURE) very well, but

the shapes of the two curves are quite similar. In particular, the minimizer of the approximative curve

(GCV) has a good quality as an approximation of the minimizer of the prediction error. This allows

one to conclude that even in situations that are still far from asymptotics, GCV can often be used quite

successfully. For both cases, Figures 1(a) and (b), it can be noted that the plots were made on the interval

λ ∈ [0,
√
2 log(n)σ]. The right side of the interval corresponds to the universal threshold, a value which

is often adopted in conservative sparse variable selection. The plots illustrate the significant gain in

prediction error that can be made by data adaptive selection, using either GCV or SURE. Moreover, the

universal threshold equally requires a reliable value for σ.

When the sample size is small, say a few tens or hundreds, some caution is needed in reading the

GCV curve. Indeed for small sample sizes, the fluctuations near the origin extend into the region of

interest. Simple minimization of GCV is not the best strategy. This is reflected in the oscillations in

the GCV efficiency curve for sample sizes up to approximately one thousand in Figure 2(b), which was

realized with simple minimization, and in the context of a signal-plus-noise model. The conclusions

about the required sample sizes would be the same for most general sparse regression problems, with

other matrices K , that is. This is illustrated by the experiment with sample size n = 1000 in Figure

1 and Table 1. The development of more sophisticated interpretations of the GCV curve, taking into

account the presence of fluctuations, is a subject of further research.

The model behind Figure 1 has been simulated 200 times, each time with freshly generated K , β and

ε. The quality of estimators is measured by the efficiency. The efficiency of a choice λo (o being GCV

or any other method) is defined as

Eff(λo) =
minλ PE(β̂)

PE(β̂λo
)

. (19)

The following table presents the empirical quantiles of the 200 observed efficiencies, for both GCV and
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Figure 1: GCV and SURE curves for n = 1000 observations in a model Y = Kβ + ε with K a band

limited matrix and β a vector of m = 3000 variables, of which a small fraction are nonzero. In (a) the

fraction of nonzeros is approximately 1%, in (b) the fraction of nonzeros is 5%.

m = 3000, n = 1000

5% 50% 95%

GCV 0.8517 0.9719 0.9997

SURE 0.9171 0.9837 0.9998

m = 300, n = 100

5% 50% 95%

GCV 0.7390 0.9508 0.9996

SURE 0.8403 0.9757 0.9997

(a) (b)

Table 1: (a) Quantiles of observed efficiencies of GCV and SURE in the model behind Figure 1(b). The

SURE method was equipped with the exact observational standard deviation. The study is based on 200

simulation runs. (b) Quantiles of observed efficiencies, for the same model as in Figure 1(b), but now

with just m = 300 variables and n = 100 observations in each simulation run.

SURE. The SURE method was equipped with the exact values of the observational standard deviation,

which is of course not available in most practical experiments. This advantage explains the difference

in efficiency completely, as further explored in Section 5.3, Lemma 1. We also see that most of the loss

in efficiency for GCV compared to the ideal SURE takes place in the lower quantiles. That is because

sometimes the minimization of GCV gets stuck in false local minima, or that the global minimum GCV

is not always the best option, as its location may be shifted by the observational errors. As mentioned

before, these effects have less impact when the number of observations increases, when the optimal

penalty parameter moves away from zero.

5.2 Asymptotic behavior of GCV

This section investigates the asymptotic behavior of the efficiency defined in (19). For the sake of easy

interpretation and discussion, the simulations in this section adopt the signal-plus-noise model, i.e., K =

12



I , although the conclusions can be verified for general K as well. The vector of true parameters β is

again constructed from a zero inflated Laplacian random variable. As this is an asymptotic study, we

let n grow and at the same time, we let proportion of nonzeros decrease as a function of n. This is

P (βi 6= 0) = q(n), where we take q(n) = C log(n)/n. We set C = 10. Such behavior for q(n) reflects

the idea that an increasing number of observations in a nonparametric model allows one to reveal more

details. The model becomes richer, which can be seen from the growing absolute number of nonzeros. At

the same time, the model becomes sparser, because growing sample sizes lead to an increasing degree of

redundancy in the observations. The parameter of the Laplace distribution for the nonzeros also depends

on n. In particular, βi|βi 6= 0 ∼ Laplace
(
a
√
q(n)

)
. This way, we have E(‖β‖2) = n/2a, while

E(‖ε‖2) = nσ2, keeping the signal-to-noise ratio constant. At the same time, E(β2
i |βi 6= 0) = 1/2q(n),

making the nonzeros more prominent against a constant level of measurement noise σ. Any threshold that

grows more slowly than the prominence of the nonzeros can be anticipated to asymptotically preserve

the signal content of the observations. This is the case for the universal threshold λn,univ =
√
2 log(n)σ.

Assuming normal noise, it is a well known result from extreme value theory that the universal threshold

asymptotically removes all the noise, meaning

lim
n→∞

P

(
n⋂

i=1

{|εi| < λn,univ}
)

= 1.

As a result, the prediction error as defined in (3) tends to zero for large sample sizes. Indeed, both bias

and variance contributions to the prediction error tend to zero. The average variance vanishes because

the zero βi’s for n → ∞ almost surely do not survive the threshold, leaving them with var(β̂i) → 0.

The nonzeros are estimated with probability P (β̂i = Yi) → 1. The variance in this category tends to σ2,

but the proportion of the nonzeros tends to zero. In a similar way, the average bias can be found to tend

to zero. Even larger thresholds, for instance, λn,2 = 2 log(n)σ are still small enough not to take away

essential information from β if n → ∞. The minimum prediction error threshold λ̂∗
n is, however, much

smaller, as can be verified empirically. Figure 2(a) confirms that all three thresholds result in prediction

errors converging to zero. The black solid line has the fastest convergence, it depicts the behavior of the

threshold λ̂∗
n with minimum prediction error. The fluctuations in the graphs are due to the fact that for

each value of n, we simulate data from a random model for sparsity. Figure 2(b) compares the efficiency

of the GCV threshold (in black solid line) with the efficiencies of the universal threshold (in grey solid

line) and the threshold λn,2 = 2 log(n)σ (in black dashed line). It is clear that, although all prediction

errors converge to zero, the latter two are not efficient. The GCV threshold focuses on estimating λ̂∗
n,

explaining its efficiency. The GCV curve has more fluctuations than the other two. This is explained

by the fact that in order to minimize GCV, we have to simulate the noise as well, whereas for a fixed

threshold, we can compute the prediction error based on the simulated noise-free values of β.
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Figure 2: (a) Simulated prediction errors as a function of the sample size n for threshold with minimum

prediction error λ̂∗
n in black solid line; for the universal threshold λn,univ =

√
2 log(n)σ in grey solid

line; and for the large threshold λn,2 = 2 log(n)σ in black dashed line. (b) Efficiency as a function of the

sample size n, for GCV minimization in black solid line; for the universal threshold in grey solid line;

and for the large threshold in black dashed line.

5.3 GCV as variance estimator

This section constructs an estimator of the variance var(εi) in a signal-plus-noise model Y = β + ε,

where the noise is assumed to be homoscedastic. The sparse nonzeros in β can be seen as the source of

outliers in an otherwise identically distributed vector Y . The idea is first to estimate β, using an ℓ0 or

ℓ1 regularized least squares (2). In the case of a signal-plus-noise model, i.e., K = I , the regularization

parameter λ becomes a threshold, as mentioned in Section 2. It can be tuned by minimizing GCVp(λ).

The expression of GCVp(λ) contains a factor νλ,p. If this factor can be estimated without knowing

or estimating the variance of the observational errors σ2, then the evaluation of GCVp(λ) does not

depend on the variance. In that case, the residuals of a GCV driven estimator β̂λGCV
can be used for the

construction of a variance estimator

σ̂2
GCV =

1

n− ν̂λGCV

SSE(β̂λGCV
) =

1

n− ν̂λGCV

n∑

i=1

(β̂iGCV − Yi)
2. (20)

In this expression, the subscript GCV refers to the minimum GCV penalty. This adaptively trimmed

estimator is remarkably robust against violation of the sparsity assumption. As an example, we compare

estimator (20) in a simple threshold scheme for signal-plus-noise observations with the median absolute

deviation (MAD) based estimator (17).

The simulation is set up as follows. Given a vector β of n = 100 unobserved mean values, a

proportion of which is zero. The nonzeros have values ±M with M = 10σ and the sign is random.

To this vector we add a vector ε ∼ NID(0, σ2). (i.e., with normally distributed, independent random
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Figure 3: Mean (Left) and median (Right) of 200 estimators σ̂MAD (Dashed) and σ̂GCV (Solid line) as a

function of the proportion of outliers in otherwise standard normal random variables. The true value of

the standard deviation is σ = 1, which is, of course, almost perfectly estimated when the proportion of

outliers is near zero.

variables, all with zero mean and variance σ2.) From the observed vector Y = β + ε, the variance of

ε is estimated, using σ̂MAD and σ̂GCV. The GCV based procedure uses soft-thresholding to find ŷiGCV.

The procedure is repeated 200 times for each chosen value of the proportion of nonzeros. The resulting

mean and median values of σ̂MAD and σ̂GCV are plotted against the proportion of nonzeros in Figure 3.

If the proportion of outliers is larger than 50%, then the GCV threshold trims away more than 50%

of the data as well, i.e., N1,λ/n > 50%, and moreover, in most cases, the remaining less-than-half of the

variables lead to an accurate estimate of the variance.

The GCV based variance estimator also has an interesting property that reveals a sort of feed-back

from GCV to SURE/Mallow’s Cp. It is stated in the following lemma.

Lemma 1 Suppose that β̂λ,p is continuous w.r.t. λ and let λGCV minimize GCVp(λ) as defined in (8).

Define a theoretical version of (20), namely σ̂2
o = SSE(λGCV)/(n − νλGCV,p). Then, λGCV also mini-

mizes ∆λ,p, as defined in (7), where σ2 in that definition is taken to be σ2 = σ̂2
o .

This feed-back property still holds if the theoretical GCV based variance estimator is replaced by the

empirical one, and the definitions of GCVp(λ) and ∆λ,p adopt the corresponding estimator ν̂λ,p.

Proof. The following lines sketch the proof for the case where β̂λ,p is continuously differentiable w.r.t. λ.

The case p = 1, where the derivative shows discontinuities, can be solved by a continuously differen-

tiable approximation of the ℓ1-norm. Denote G(λ) = GCVp(λ) − σ̂2
GCV, then if we adopt σ̂2

GCV in
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Definition (7) of ∆λ,p, Equation (9) can be rewritten as

G(λ) =
∆λ,p − σ̂2

ox
2(λ)

[1− x(λ)]2
or ∆λ,p = G(λ) [1− x(λ)]2 + σ̂2

ox
2(λ),

with x(λ) = νλ,p/n. Taking the derivative leads to

d∆λ,p

dλ
= G′(λ) [1− x(λ)]2 − 2G(λ) [1− x(λ)] x′(λ) + 2σ̂2

ox(λ)x
′(λ).

Substituting σ̂2
o = GCVp(λGCV) [1− νλGCV,p/n] = G(λ) [1− x(λGCV)] /x(λGCV), yields an expres-

sion which is zero if G′(λ) = 0, thereby completing the proof of Lemma 1. ✷

The implication of this result is the following. If SURE is equipped with the variance estimator based

on GCV, then its efficiency falls back to that of GCV. In other words, the GCV approximation of SURE

does not cause any loss in efficiency as such, it only adds an implicit variance estimator, which is of

course not perfect, yet surprisingly robust.

5.4 GCV for hard thresholding

This section works within the signal-plus-noise model Y = β + ε, where β is again an instance from

the zero inflated Laplace model, defined in Section 5.1.

β is estimated using hard thresholding. A naive implementation for GCV0(λ) would be to approxi-

mate in Expression (8) νλ,0 by E(N1,λ), the expected number of nonzeros in the selection, which in its

turn would be estimated, trivially, by N1,λ:

GCV0(λ) =
1
nSSE(β̂λ,0)(
1− E(N1,λ)

n

)2 . (21)

This corresponds to the dotted lines (0) in Figures 4(a)-(b). The approximation seems to be sufficiently

precise in the immediate neighborhood of the optimal threshold as well as for larger threshold values.

That is, Proposition (1) probably holds, even if νλ,0 is replaced by E(N1,λ). Nevertheless, this definition

of GCV is useless, since it cannot be used for minimization, due to the global minimum in λ = 0.

But also a more accurate approximation of νλ,0, using (6) shows practical problems. The corre-

sponding curves carry numbers (1) and (2) in Figures 4(a) and (b). This time, the slopes of a large local

maximum disturbs the localization of the true minimum. In the theoretical case where the true value

of σ2 is available, the minimization could still give an acceptable result, see the grey curves (1) in Fig-

ures 4(a) and (b). The situation deteriorates when σ2 has to estimated. Since the variance estimator is

sensitive to the degree of sparsity, the problem becomes more prominent when the data are less sparse.

Sparsity parameter q is 0.05 in Figure 4(a) and q = 0.35 in Figures 4(b) and (c).

The alternative definition in (18), used in Figure 4(c) does not experience nuisance minima and max-
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Figure 4: GCV curves for hard-thresholding in signal-plus-noise model. In (a) a fraction of approxi-

mately 5% of the noise-free variables are nonzero, in (b) and (c) the fraction is 35%. (a) and (b) use

Definition (8) for GCV, except for curves (0), which represent Expression (21). The curves in (c) cor-

respond to Expression (18). Numbers (1), (2), (3) refer to the variance estimation within the GCV

definition. (1), i.e., grey lines, stand for exact variance (unknown in practice); (2), i.e., dashed lines,

stand for the estimator based on the median absolute deviation (17); (3), i.e., the dotted line in (c), stands

for the estimator based on GCV for soft thresholding (20). On all curves, MSE stands for mean squared

error, which is MSE = ‖β̂ − β‖22.

ima. The GCV curve does show a vertical translation w.r.t. what could be expected, i.e., the prediction

error (or MSE, mean squared error) plus the variance. This phenomenon is explained in the same way as

in Figure 1(b).

6 Summary and concluding remarks

This paper has promoted the use of Generalized Cross Validation (GCV) in the selection of sparse re-

gression models, either with or without shrinkage rules.

Unlike most selection criterions, such as Mallows’s Cp or Stein Unbiased Risk Estimator (SURE),

GCV does not require an explicit variance estimator. Even in the simple signal plus noise model or in

other cases where a variance estimator is easy to construct and robust, the implicit estimation of GCV

outperforms the explicit method. In the case of general sparse regression, where the explicit estimation

of the variance is more challenging, the benefit of the GCV approach is even more outspoken.

This paper has proven two results in support of GCV. The first result states that GCV mimics the

behavior of Mallows’s Cp or SURE as a function of the tuning parameter in the neighborhood of the

optimal value of that parameter. The approximation by GCV is asymptotically optimal. The contribution

of this result compared to previous results is twofold. First, it is found that optimality of GCV holds

in probability, and not just for the expected value of GCV. Second, the optimality holds for any sparse

regression model, not just for the signal plus noise case (i.e., where the design matrix is the identity

matrix).
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The second result focusses on the behavior of GCV near zero penalties. This analysis is necessary

for successful minimization of GCV. It may even suggest alternative definitions in some applications.

The simulation study has shown that GCV may also be successful in cases that are still far from

the asymptotics sketched in the theoretical analysis. Sample size should, however, be large enough.

The implicit variance estimator of GCV is more robust than methods where variance is considered as a

nuisance parameter. In many applications, the construction of a variance estimator is far from trivial.

7 Proofs of Propositions 1 and 2

7.1 Discussion on the assumptions

The sparsity assumptions, stated in Proposition 1, are twofold. First, it is required that supλ∈Λn
νλ,p =

o(n) for n → ∞, meaning that the number of significant parameters is an order of magnitude smaller

than the number of observations. Second, the total number of parameters in the full model, m, must not

be too large. Otherwise finding the needles in the haystack becomes too demanding. Similar conditions

appear in the literature [2, 4] for successful recovery of sparse data using ℓ1 regularized least squares

methods.

Since the results are presented for a wide class of variable selection and estimation methods, it

is not surprising that assumptions are needed on the interaction between the model and its estimation

method. The design coherence property in Assumption 1, (12) excludes estimators of the model that

predict the observations with relatively low variances using highly correlated estimators with arbitrarily

large variances. The signal-plus-noise model, where K is the identity matrix, is a prototype of an ideal

situation, the constant c in (12) being equal to one. A sufficient but far from necessary condition is

that the eigenvalues of the matrix of correlations D
−1/2
n ΣnD

−1/2
n are bounded from below by c. If

the estimator β̂ has a diagonally dominated covariance matrix, the assumption is fulfilled. Problems

occur when multicollinearity in the covariates is not properly addressed by the regularization. In such

a case, a subset of nonzero estimators in β̂ can be replaced by a different subset with approximately

the same degree of sparsity and nearly the same residuals. A small change in the errors can have a

large effect on the selection. The parameter estimation is subject to large volatility, while the effect on

the prediction ŷ is limited, because the estimators in β̂ have negative correlations: a large value in one

subset is compensated by a small or zero value in another subset. As a conclusion, the regularization

should compensate for the collinearity in the design.

As a trivial counterexample of design coherence, consider the estimator ŷi = β̂1 + β̂2, so Ki =

[ 1 1 ]. Then regularization by the restriction that β̂1 = −β̂2 leads to corr(β̂1, β̂2) = −1. This

correlation structure is not coherent with the ith row of the design matrix, meaning that the restriction

leads to var(ŷi) = 0, while var(β̂j) for j ∈ {1, 2} can be arbitrarily large.
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7.2 Proof of Proposition 1

From Expression (10), and the definition of Qλ in (11), it is clear that we can concentrate on showing

that

sup
λ∈Λn

σ2
(νλ,p

n

)2

∆λ,p + Vn

P→ 0. (22)

Using E(ε) = 0, the homoscedasticity of the observational errors, and denoting ρλ,i = corr(εi, εi−eλ,i),

leads to

ν2λ,p =
1

σ4

[
E
(
εT (ε− eλ)

)]2
=

1

σ4

[
n∑

i=1

σ
√
var(εi − eλ,i)ρλ,i

]2

≤ 1

σ2

[
n∑

i=1

var(εi − eλ,i)

]
·
[

n∑

i=1

ρ2λ,i

]
≤ 1

σ2

[
n∑

i=1

E(εi − eλ,i)
2

]
·
[

n∑

i=1

ρ2λ,i

]

=
n

σ2
PE(β̂λ,p) ·

[
n∑

i=1

ρ2λ,i

]
=

n

σ2
E(∆λ,p) ·

[
n∑

i=1

ρ2λ,i

]
.

The main part of the proof consists in finding an upper bound for supλ∈Λn

∑n
i=1 ρ

2
λ,i. First, for a

given λ ∈ Λn, denote ρλ,ij = corr(εi, β̂λ,j), where β̂λ,j denotes the jth component of β̂λ,p. The index p

is being omitted as it has no role in the current argument. Then, from ε− eλ = ŷλ −y = Kβ̂λ,p−Kβ,

and using the Cauchy-Schwarz inequality, it follows that

ρλ,i = corr(εi, ŷλ,i) =

∑m
j=1Kijρλ,ij

√
var(β̂λ,j)√

var(ŷλ,i)
≤

√∑m
j=1K

2
ijvar(β̂λ,j)

√∑m
j=1 ρ

2
λ,ij√

var(ŷλ,i)
. (23)

Let Σ
β̂,λ

denote the covariance matrix of β̂λ,p and D
β̂,λ

the diagonal matrix whose elements are the

diagonal elements of Σ
β̂,λ

. Writing Ki for the ith row of K , the first part of (23) can be rewritten and

bounded, for any i and any λ ∈ Λn, as

√∑m
j=1K

2
ijvar(β̂λ,j)√

var(ŷλ,i)
=

√√√√KiDβ̂,λ
KT

i

KiΣβ̂,λ
KT

i

≤ 1

c
,

where the constant c > 0 has been introduced in (12).

We now establish an upper bound for the remaining factor,
√∑m

j=1 ρ
2
λ,ij , in (23). Defining ξλ,j =

∑n
i=1 ρλ,ijεi/

∑n
i=1 ρ

2
λ,ij, and ρ̃λ,j = corr(ξλ,j, β̂λ,j), then E(ξλ,j) = 0, var(ξλ,j) = σ2, and

∑n
i=1 ρ

2
λ,ij =

ρ̃2λ,j . Furthermore, denoting Jλ,j = {β̂λ,j 6= 0}, leads to

ρ̃λ,j =
E(ξλ,jβ̂λ,j)

σ
√
var(β̂λ,j)

=
E(ξλ,j β̂λ,j |Jλ,j)P (Jλ,j)

σ

√
var(β̂λ,j |Jλ,j)P (Jλ,j) +

[
E(β̂λ,j |Jλ,j)

]2
P (Jλ,j)P (J ′

λ,j)

19



≤ E(ξλ,j β̂λ,j|Jλ,j)P (Jλ,j)

σ
√
E(β̂2

λ,j |Jλ,j)P (Jλ,j)P (J ′
λ,j)

≤

√
E(ξ2λ,j |Jλ,j)E(β̂2

λ,j |Jλ,j)P (Jλ,j)

σ
√
E(β̂2

λ,j |Jλ,j)P (Jλ,j)P (J ′
λ,j)

=

√
E(ξ2λ,j |Jλ,j)

σ

√√√√P (Jλ,j)

P (J ′
λ,j)

For P (Jλ,j) ≤ 1/2, this becomes ρ̃λ,j ≤
√
E(ξ2λ,j|Jλ,j)

√
2P (Jλ,j)/σ, while for P (Jλ,j) ≥ 1/2, it

is obvious that ρ̃λ,j ≤ 1 ≤
√
2P (Jλ,j). Hence, ρ̃2λ,j ≤ 2max(1, E(ξ2λ,j |Jλ,j)/σ2) · P (Jλ,j). Define

now pλ,j = P (Jλ,j), then the event Aλ,j that maximizes E(ξ2λ,j |Aλ,j) for given P (Aλ,j) = pλ,j , is

Aλ,j = {|ξλ,j | > Q|ξλ,j|(1 − pλ,j)}, where Q|ξλ,j |(α) is the quantile function of |ξλ,j |. Moreover,

E(ξ2λ,j |Aλ,j) ≥ σ2, so max(1, E(ξ2λ,j |Jλ,j)/σ2) ≤ E(ξ2λ,j | |ξλ,j| ≥ Q|ξλ,j|(1− pλ,j))/σ
2.

Combination of the upper bounds for the parts of (23) leads to

n∑

i=1

ρ2λ,i ≤ 1

c2

m∑

j=1

n∑

i=1

ρ2λ,ij =
1

c2

m∑

j=1

ρ̃2λ,j ≤
1

c2σ2

m∑

j=1

2max(σ2, E(ξ2λ,j |Jλ,j))P (Jλ,j)

≤ 2

c2σ2

m∑

j=1

E[ξ2λ,j | |ξλ,j | ≥ Q|ξλ,j |(1− pλ,j)]pλ,j . (24)

Defining Gλ,j(p) = pE(ξ2λ,j| |ξλ,j | ≥ Q|ξλ,j |(1−p)) =
∫
|x|>Q|ξλ,j|

(1−p) x
2f|ξλ,j |(x)dx, it can be verified

that Gλ,j(p) =
∫ p
0 Q2

|ξλ,j |
(1 − α)dα. The upper bound (24) depends twice on λ, first in the quantile

function Q|ξλ,j |(p), and second in its argument. We now take the supremum over the quantile, not yet over

its argument. Define Qm,n(p) = supλ∈Λn
maxj=1,...,mQ|ξλ,j |(p) and Gm,n(p) =

∫ p
0 Qm,n(1 − α)dα,

then Gm,n(p) is a concave function majorizing the concave functions Gλ,j(p), while Gm,n(0) = 0.

Using the concavity of Gm,n(p), we thus arrive at

r(n) = sup
λ∈Λn

ν2λ,p
n2

· σ2

PE(β̂λ,p)
≤ 1

n
sup
λ∈Λn

n∑

i=1

ρ2λ,i ≤
2

c2σ2

1

n
sup
λ∈Λn

m∑

j=1

Gλj
(pλj

)

≤ 2

c2σ2

1

n
sup
λ∈Λn

m∑

j=1

Gm,n(pλj
) ≤ 2

c2σ2

m

n
sup
λ∈Λn

Gm,n


 1

m

m∑

j=1

pλ,j




=
2

c2σ2

m

n
Gm,n

(
supλ∈Λn

n1,λ

m

)
.

At this point, a distinction has to be made according to the behavior of m for n → ∞. If m

is constant or weakly depending on n, meaning that m = O(supλ∈Λn
n1,λ) for n → ∞, then r(n) =

O{(m/n)Gm(supλ∈Λn
n1,λ/m)} = O(supλ∈Λn

n1,λ/n). For the more common case where m depends

strongly on n, Lemma 2 proves that for any m, there exists a value x∗, so that for any x > x∗, [1 −
Q

−1
m,n(x)]/L exp(−γx) ≤ 1, where γ and L are constants defined in Proposition 1. Let p∗ = 1 −

Q
−1
m,n(x

∗) and p = 1−Q
−1
m,n(x). Also let y = log(L/p)/γ. Then L exp(−γy) = p = [1−Q

−1
m,n(x)] ≤
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L exp(−γx), and so y ≥ x, which means log(L/p)/γ ≥ Qm,n(1 − p). All together, for any m, there

exists a positive p∗ and 0 < p < p∗, so that Qm,n(1− p) ≤ log(L/p)/γ.

Substituting p = supλ∈Λn
n1,λ/m → 0, and using De l’Hôpital’s rule, we find

0 ≤ lim
n→∞

r(n) ≤ lim
n→∞

∫ supλ∈Λn
n1,λ/m

0 [log2(L/p)/γ2]dp

(supλ∈Λn
n1,λ/m)(n/ supλ∈Λn

n1,λ)
= lim

n→∞

log2(Lm/ supλ∈Λn
n1,λ)/γ

2

n/ supλ∈Λn
n1,λ

.

The rightmost expression tends to zero if supλ∈Λn
n1,λ log

2(m)/n → 0.

Finally, we can compute for arbitrary δ > 0,

P

(
sup
λ∈Λn

∣∣∣∣∣
σ2
(νλ,p

n

)2

∆λ,p + Vn

∣∣∣∣∣ > δ

)
≤ P

(
sup
λ∈Λn

σ2
(νλ,p

n

)2

E(∆λ,p)
· sup
λ∈Λn

E(∆λ,p)

∆λ,p + Vn
> δ

)
→ 0,

thereby concluding the proof of Proposition 1. ✷

Lemma 2 Let Xi, i = 1, . . . , n be a collection of independent random variables and suppose that there

exists constants γ and L, so that for all i ∈ {1, . . . , n} : P (|Xi| ≥ x) ≤ L exp(−γx). Define

Yn =
n∑

i=1

αn,iXi,

where ‖αn‖q ≤ 1, for some q ∈ [0, 2],

then, for any value of n,

lim
x→∞

P (|Yn| ≥ x)

e−γx
≤ L. (25)

If ‖αn‖∞ < 1, then P (|Yn| ≥ x) = o (e−γx), as x → ∞, and for any value of n. Let Bq,n be a closed

ℓq unit ball Bq,n = {αn|‖αn‖q ≤ 1} and define Y ∗
n = supαn∈Bq,n

Yn, then Y ∗
n satisfies (25).

Proof. Lemma 2 can be proven by induction on n. The case n = 1 is trivial. So, suppose that all αn,i

are nonzero and that the result (25) holds for n−1, then first define X ′
n−1 =

∑n−1
i=1 αn,iXi/

(∑n−1
i=1 |αn,i|q

)1/q
.

Furthermore, defining βn−1 =
(∑n−1

i=1 |αn,i|q
)1/q

> 0 and βn = |αn| > 0, |Yn| can be bounded as

Yn ≤ βn−1|X ′
n−1|+ βn|Xn|. Using the independence of the Xi, it follows that

P (|Yn| ≥ x) ≤
∫ ∞

0
P

(
|Xn| ≥

x− βn−1u

βn

)
dP (|X ′

n−1| ≤ u)

≤
∫ x/βn−1

0
L exp

(
−γ(x− βn−1u)

βn

)
dP (|X ′

n−1| ≤ u) +

∫ ∞

x/βn−1

dP (|X ′
n−1| ≤ u)

= L exp (−γx/βn)

∫ x/βn−1

0
exp (γβn−1u/βn) dP (|X ′

n−1| ≤ u) + P (|X ′
n−1| ≥ x/βn−1).

Since βn−1 and βn are nonzero and positive, and βq
n−1 + βq

n =
∑n

i=1 |αn,i|q ≤ 1 we find βn−1 < 1 and
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βn < 1.

As a result, we have

lim
n→∞

P (|X ′
n−1| ≥ x/βn−1)

e−γx
= lim

n→∞

P (|X ′
n−1| ≥ x/βn−1)

e−γx/βn−1

e−γx/βn−1

e−γx
≤ L · 0 = 0

and, using De l’Hôpital’s rule,

lim
n→∞

L exp (−γx/βn)
∫ x/βn−1

0 exp (γβn−1u/βn) dP (|X ′
n−1| ≤ u)

e−γx

= L lim
n→∞

∫ x/βn−1

0 exp (γβn−1u/βn) dP (|X ′
n−1| ≤ u)

exp (−γx(1− 1/βn))
= 0.

We thus conclude that P (|Yn| ≥ x) = o (e−γx) , unless either βn−1 or βn takes the value 1. This

situation occurs only if αn is a Kronecker delta. In that case, the inequality of (25) is trivially satisfied.

Uniform convergence over unit ℓq-balls can be verified following a similar scheme by induction. ✷

7.3 Proof of Proposition 2

As rank(K) = n, and m ≥ n, there exist solutions for the system Kβ̂0 = Y . Apart from exceptional

cases, all solutions have at least n nonzero elements. Selecting the solution β̂0 with smallest value for

‖β̂0‖1 leads to the observation that for λ = 0 both the numerator and the denominator of E[GCV1(λ)]

are zero.

The numerator of E[GCV1(λ)] equals 1
nESSE(β̂λ,1) =

1
nE

[
(Y −Kβ̂λ,1)

T (Y −Kβ̂λ,1)
]
, where

β̂λ,1 is a minimizer of (2) with p = 1.

The derivative of the numerator w.r.t. λ is then

1

n

d

dλ
ESSE(β̂λ,1) =

1

n
E

([
∇βSSE(β̂λ,1)

]T
· dβ̂λ,1

dλ

)

=
1

n
E

(
n∑

i=1

[
−2KT

i (Y −Kβ̂λ,1)
] dβ̂i
dλ

)

The Karush-Kuhn-Tucker conditions for β̂λ,1 to be the minimizer of (2) impose that
(
KT (Y −Kβ̂λ,1)

)
j
=

sign(β̂j) · λ, when β̂j 6= 0 and

∣∣∣∣
(
KT (Y −Kβ̂λ,1)

)
j

∣∣∣∣ < λ otherwise. Denoting Jλ the observation de-

pendent index set corresponding to the nonzeros in β̂λ,1, we have

d

dλ
ESSE(β̂λ,1) = (−2λ) · E


∑

j∈Jλ

sign(β̂j) ·
dβ̂j
dλ


 = (−2λ) ·E


∑

j∈Jλ

d|β̂j |
dλ


 .

As d
dλESSE(β̂λ,1)/λ converges to a nonzero, finite constant when λ → 0, it follows that ESSE(β̂λ,1) ≍
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λ2, where a(λ) ≍ b(λ) means (here) that 0 < limλ→0 a(λ)/b(λ) < ∞ (implying the existence of the

limit).

The denominator of E[GCV1(λ)] equals (1− νλ,1/n)
2, where

1− νλ,1
n

=
1

nσ2
E
[
εTeλ

]
=

1

nσ2
E
[
εT (Y −Kβ̂λ,1)

]
=

1

nσ2
E
[
ηTKT (Y −Kβ̂λ,1)

]
.

The last equation follows from the fact that there must exist a vector η, independent from λ, for which

ε = Kη, because rank(K) = n. Again the Karush-Kuhn-Tucker conditions allow to write that 1 −
νλ,1
n ≍ λ, and so numerator and denominator of E[GCV1(λ)] are both of order λ2 for small λ.

In the signal-plus-noise model Y = β + ε, the limit can be further developed. The denominator

equals (1 − νλ,1/n)
2 = 1

n2 [
∑n

i=1 P (|Yi| < λ)]2 . Given the bounded derivatives of the density fε(u),

it holds for small λ that P (|Yi| < λ) ∼ 2λfYi
(0) = 2λfε(−βi). Substitution into the definition of

E[GCV1(λ)] leads to

lim
λ→0

E[GCV1(λ)] = lim
λ→0

1
nESSE(β̂λ,1)

4λ2
[
1
n

∑n
i=1 fε(−βi)

]2 = lim
λ→0

(1/n) d
dλESSE(β̂λ,1)

8λ [(1/n)
∑n

i=1 fε(−βi)]
2 .

As in the signal-plus-noise model β̂λ,1 = STλ(Y ), with STλ(x) the soft-threshold function, it holds that

d|β̂i|
dλ = −1,∀i ∈ I , and thus d

dλESSE(β̂λ,1) = 2λE(N1,λ), where N1,λ is the number of nonzeros in

β̂λ,1. Finally, because of the bounded derivative of the error density function and the sparsity assumption,

the denominator can be simplified using

∣∣∣∣∣fε(0) − lim
n→∞

1

n

n∑

i=1

fε(−βi)

∣∣∣∣∣ ≤ lim
n→∞

1

n

n∑

i=1

|fε(0)− fε(−βi)| ≤ M · lim
n→∞

1

n

n∑

i=1

|βi| = 0.

In this approximation, M is the upper bound on the absolute derivative of the error density. Substitution

into the expression for the limit leads to the result stated in the Proposition. The expression for normal

observational errors is a straightforward elaboration, thereby concluding the proof of Proposition 2. ✷

7.4 The effect of estimated degrees of freedom in the definition of GCV

The definition for GCV in (8), used in this paper, contains the unobserved factor νλ,p. The motivation for

adopting a definition with an unobserved non-random factor is that it facilitates the theoretical analysis.

Section 2 lists a few cases where this factor can be estimated. We now discuss the effect of the estimation

on the quality of GCV as an estimator of the prediction error, leading to the conclusion that the effect is

limited. Indeed, let GCVp,ν̂(λ) be an empirical analogue of GCV, defined by

GCVp,ν̂(λ) =
1
nSSE(β̂λ,p)(
1− ν̂λ,p

n

)2 , (26)
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then

GCVp,ν̂(λ)−GCVp(λ) = GCVp(λ)
(ν̂λ,p/n − νλ,p/n)(2− ν̂λ,p/n− νλ,p/n)(

1− ν̂λ,p
n

)2 .

The offset GCVp,ν̂(λ)−GCVp(λ) has an order of magnitude equal to that of ν̂λ,p/n−νλ,p/n. The offset

should be small, compared to ∆λp
or to GCVp(λ) − σ2. An argument similar to the proof of Corollary

1, then leads to the conclusion that the offset does not perturbate the minimization of GCVp(λ). As a

full analysis would depend on the model and estimation method, we present here a global sketch of the

analysis.

The estimator ν̂λ,p is typically equal or close to the number of nonzeros N1,λ. If the selection

were completely random, then N1,λ would be Poisson distributed. This would be the case for β = 0.

Otherwise, in all practical problems where β 6= 0, the count N1,λ is underdispersed, meaning that

var(ν̂λ,p) ≤ n1,λ ≈ νλ,p. Assuming a negligible bias in ν̂λ,p, we can write

√
var(ν̂λ,p/n− νλ,p/n) ≤

√
νλ,p/n.

On the other hand, E(∆λp
) = PE(β̂λ,p) is at least of the order O(n1,λ/n). Indeed, even in the ideal

case where β̂λ,p contains no bias, the expected n1,λ nonzero estimators all carry a variance of order

at least O(1/n). As a conclusion, the error
{
E
[
(ν̂λ,p/n− νλ,p/n)

2
]}1/2

= O(
√
νλ,p/n) os slightly

smaller than the prediction error itself. More importantly, the the estimator ∆λp
of the prediction error

is inevitably based on the squared residual, and has therefore a standard error of nearly O(1/
√
n). As a

conclusion, the fluctuations in SSE(β̂λ,p) dominate the fluctuations that arise from substitution of νλ,p/n

by ν̂λ,p/n in (7) or (8).

8 Software and reproducible figures

All figures and tables in this paper can be reproduced with routines that are part of the latest version of

ThreshLab, a Matlab R©software package available for download from

http://homepages.ulb.ac.be/∼majansen/software/threshlab.html.

See

1. help simulateCpGCVpaper2012 for Figure 1,

2. help robustnessGCVvarest for Figure 3,

3. help simulateGCVhardthresh for Figure 4.
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