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Université libre de Bruxelles, department of Mathematics

August 2016 (final version)

Abstract

The Multiscale Local Polynomial Transform (MLPT), developped in this

paper, combines the benefits from local polynomial smoothing with sparse

multiscale decompositions. The contribution of the paper is twofold. First,

it focusses on the bandwidths used throughout the transform. These band-

widths operate as user controlled scales in a multiscale analysis, which is

explained to be of particular interest in the case of nonequispaced data. The

paper presents both a likelihood based optimal bandwidth selection and a

fast, heuristic approach. The second contribution of the paper is the combi-

nation of local polynomial smoothing with orthogonal prefilters, similar to

Daubechies’ wavelet filters, but defined on irregularly spaced covariate val-

ues.
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1 Introduction

Multiscale local polynomial decompositions have recently been proposed [Jansen,

2013] as an alternative for wavelet transforms on irregularly spaced observations,

referred to as second generation wavelets [Sweldens, 1998]. Both types of data

decompositions are constructed using the lifting scheme [Sweldens, 1996]. The

lifting scheme provides a sequence of linear operations defining a filterbank. This

filterbank is a linear operation that maps an input vector onto a coarse scale ap-

proximative vector plus a vector representing the offset between fine scale input

and coarse scale approximation. A repeated application of a filterbank takes each

time the coarse scale approximation of the previous step as new input. The collec-

tion of detail coefficients at successive scales constitutes either a wavelet transform

or a multiscale local polynomial decomposition.
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An important difference between a wavelet transform and a multiscale local

polynomial decomposition lies in the way it is designed. In particular, the central

notion of the scales in the multiscale decompositions is introduced in a different

way. In a wavelet transform, the calculation of a coarse scale coefficient involves a

fixed number of adjacent fine scale coefficients. The distance between those points

determines the working scale. In a multiscale local polynomial transform, the basic

operation in the filterbanks is a local polynomial smoother. The operations are

steered by a kernel function, whose bandwidth fixes the number of input points in

the smoothing. Scale is thus imposed explicitly by the selections of the successive

bandwidths.

Bandwidth selection has been an important topic in the literature of kernel and

local polynomial smoothing [Fan and Gijbels, 1996, Chapter 3], but the context

of this paper is different. In uniscale kernel methods, even with local bandwidths

[Vieu, 1991], the optimal bandwidth finds the best trade-off between squared bias

and variance or between goodness of fit and smoothness for use in a linear smooth-

ing method. In this paper, the successive bandwidths are parameters in a linear

multiscale decomposition that prepares for a nonlinear processing. The objective is

to find bandwidths that lead to optimal multiscale decomposition, in the sense that

the resulting decomposition is as easy as possible to work with. More precisely,

we optimise the bandwidths with respect to the sparsity of the decomposition.

This paper is structured as follows. Section 2 presents the general concepts of

the Multiscale Local Polynomial Decompositions, as proposed in [Jansen, 2013].

Section 3 has an original contribution about the design of the Multiscale Local

Polynomial Decompositions, using orthogonal prefilters that are related to Daubechies’s

orthogonal wavelet filters. Then, Section 4 discusses the choice of the bandwidths

in the Multiscale Local Polynomial Decomposition, which is the second contribu-

tion of this paper. Section 5 contains a simulation study, comparing a fast heuristic

bandwidth choice with the data dependent choice in Section 4. A real data illus-

tration with astronomical spectra is given in Section 6. The concluding section

summarises the algorithm and it lists the benefits from combining local polynomial

smoothing and sparse multiscale analysis.

2 Multiscale Local Polynomial Decompositions

2.1 Forward and inverse transform

Suppose we are given a signal f(x), observed in n covariate values xi ∈ [0, 1]
under additive, independent and homoscedastic errors. The covariate values are

assumed to be order statistics from a random design, formalised as

(Yi|X(i) = xi) = f(xi) + σZi, (1)

where the errors are assumed to be normal and independently distributed and the

design points are assumed to fluctuate around the equidistant grid, i.e., E(X(i)) =
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i/n. The function f(x) is assumed to be piecewise smooth, meaning that it is Lips-

chitz ν continuous, for positive ν, possibly larger than one, except in a finite subset

of [0, 1]. The subset contains discontinuities, i.e., jumps, or other singularities,

such as cusps.

The Multiscale Local Polynomial Decomposition takes the observations as fine

scale input, assigning sJ,k = Yk+1 for k = 0, . . . , n − 1. The index J refers to

the finest or highest resolution level. In vector form, this is sJ = Y , where sJ

are known as scaling coefficients. At the same time, we let nJ = n denote the

length of sJ and xJ = x the corresponding vector of covariates. The multiscale

decomposition constructs successive approximations sj of sJ , associated with a

subsampled vector of xJ , defined as follows.

Definition 1 (subsampling) Suppose that xj+1 is a vector of length nj+1 at a res-

olution level labelled j + 1. Let e(j + 1) ⊂ {1, . . . , nj+1} be a subset of indices.

Then the subsampled vector at resolution level j is xj = xj+1,e(j+1). The sub-

sampling matrix J̃j is the nj × nj+1 rectangular matrix obtained by taking the

all rows r from the nj+1 × nj+1 identity matrix for which r ∈ e(j + 1), so that

xj = J̃jxj+1. If e(j + 1) = {2k|k = 0, . . . , nj}, then the subsampling is termed

dyadic, meaning that xj,k = xj+1,2k and nj = ⌈nj+1/2⌉.

The rest of the paper will adopt the short version xj = xj+1,e to denote the sub-

sampled vector whenever no confusion is possible. Moreover, all subsampling in

this paper is dyadic, although it should be emphasised that extension towards other

subsampling schemes is straightforward. A simple coarse scale approximation of

the observations can be obtained by simple subsampling sj = sj+1,e = J̃jsj+1.

Alternatively, it is possible to apply a prefiltering operation [Jansen, 2013] includ-

ing a subsampling. More precisely, J̃j can be replaced by a general nj × nj+1

rectangular matrix F̃j ,

sj = F̃jsj+1 (2)

The main objective of F̃j is to lower the variance in sj . Section 3 develops the

design of orthogonal prefilters.

The information lost in the subsampling process can be recovered from a detail

coefficient vector dj defined as

dj = D−1
j (sj+1 −Pjsj). (3)

The diagonal matrix D−1
j can be used for norming or standardisation purposes. We

take Dj = Ij+1, the nj+1 × nj+1 identity matrix, unless otherwise specified. The

operation carried out by the nj+1 × nj matrix Pj lies at the heart of the method.

The idea is to use sj in the construction of a prediction of sj+1. In most points of

xj+1, the prediction performs well, which means that the offset vector Djdj or its

normalised version dj is sparse, i.e., it contains many zeros or near-zeros.

In particular, this paper investigates the case where Pjsj is the local polyno-

mial estimator, evaluated in the points xj+1 and based on the observations (xj, sj).
This amounts to the definition of a forward multiscale local polynomial transform.
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Definition 2 A multiscale local polynomial transform on a subsampling scheme

defined by J̃j , j = J − 1, J − 1, . . . , L is an overcomplete transform that maps a

vector sJ of length nj onto the set of vectors {sL,dL, . . . ,dJ−1}, defined by (2)

and (3), where Pj is a local polynomial smoothing matrix. This local polynomial

smoothing matrix has on its kth the values Pj(xj+1,k;xj), where Pj(x;xj) is a

vector of length nj with components depending on variable x, given by

Pj(x;xj) = X(p̃)(x)

(
X

(p̃)
j

T
Wj(x)X

(p̃)
j

)−1 (
X

(p̃)
j

T
Wj(x)

)
. (4)

In this expression, X(p̃)(x) = [1x . . . xp̃−1] is a row vector of p̃ power functions,

and the integer p̃ is the order of the prediction. Moreover, the nj × p̃ matrix X
(p̃)
j

has elements (
X

(p̃)
j

)

kr
= xr−1

j,k . (5)

Finally, Wj(x) is a diagonal matrix of weights with elements (Wj)kk(x) = K
(
x−xj,k

hj

)
.

The function K(x) is the kernel function and hj is the bandwidth at resolution level

j.

As in the context of wavelet transforms, the order of prediction p̃ in (4) is termed the

number of dual vanishing moments. The kernel function is assumed to be unimodal

and symmetric around the origin. Furthermore, it should decay fast or even be zero

outside the interval [−1, 1]. The kernel function is rescaled by the bandwidth. The

bandwidth fixes for each observation sj+1,k the window of adjacent observations

that contribute to the prediction in xj+1,k. This window of adjacent observations

replaces a multiscale triangulation in a 2D wavelet transform on scattered data

[Jansen, 2014]. The lower the value of j, the more points have been taken out at

previous, higher resolution levels. Therefore, hj should increase when j decreases.

The bandwidth hj is thus the user-controlled scale used at resolution level j.

The inverse of (3) is immediate, reconstructing sj+1 as

sj+1 = Djdj +Pjsj . (6)

As a result, the finest scale data sJ = Y can be reconstructed from one lowest level

vector sL and all intermediate detail vectors dj , with j = L,L+ 1, . . . , J − 1.

2.2 Multiscale refinement and scaling basis functions

For an appropriate design of a multiscale local polynomial decomposition, it is in-

teresting to look at the underlying basis functions that can be associated to the data

transformation, just as in a wavelet transform. Let {ϕj,k(x); k = 1, . . . , nj} be

a set of scaling functions corresponding to the scaling coefficients sj,k. Expres-

sions for appropriate basis functions ϕj,k(x) follow by proceeding to finer scales.

Starting off at scale j, the vector of scaling coefficients sj represents the function

fj(x) =

nj∑

k=1

sj,kϕj,k(x) = Φj(x)sj , (7)
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where Φj(x) is the row vector containing the scaling functions as its elements.

Imposing that fj(x) can also be decomposed at a finer scale, we can write

fj(x) =

nj+1∑

k=1

sj+1,kϕj+1,k(x) = Φj+1(x)sj+1,

where the fine scale coefficients follow from (6), taking dj = 0j . In particular, if

we start off with a canonical vector for sj , or replace it by the identity matrix, we

find a recursive definition for the associated scaling functions

Φj(x) = Φj+1(x)Pj . (8)

At the finest scale J , we can take the scaling function ϕJ,k(x) to be characteristic

functions on [(xJ,k−1 + xJ,k)/2, (xJ,k + xJ,k+1)/2]. By further refinement of the

grid of covariates, i.e., J → ∞, all scaling functions can be defined up to an

arbitrarily fine scale. This process of refinement is known as subdivision. For

use in practice, Expression (8) can be thus be seen as a formal, inversely recursive

definition of the basis functions associated to a given prediction operation Pj . In

general, there exists no closed form for ϕJ,k(x). In particular, the scaling function

does not coincide with the kernel function used in the local polynomial prediction

in Pj .

In a similar way we can associate basis functions with the detail offsets dj ,

which is

Ψj(x) = Φj+1(x)Dj , (9)

allowing us to interpret an inverse transform (6) with nonzero dj as the general

refinement

Φj+1(x)sj+1 = Φj(x)sj +Ψj(x)dj . (10)

2.3 Properties of the Multiscale Local Polynomial Transform

Because at each scale the size of the detail coefficient vector dj equals the size of

the fine scale approximation vector sj+1, the total number of coefficients used in

the reconstruction equals #{sL,k}+#{dj,k, j = L, . . . , J−1} = nL+
J−1∑

j=L

nj+1 =

J∑

j=L

⌈
n/2J−j

⌉
= O(2n). The decomposition (3) of Y = sJ into [sL;dL,...,J−1]

is thus expansive or overcomplete, meaning that (6) is not the only possible re-

construction. Alternatives for (6) would lead to alternative functions in Φj(x) and

Ψj(x).
Another effect of the overcompleteness is that the functions in Ψj(x) and in

Φj(x) together do not constitute a basis. Both sets Ψj(x) and Φj(x) separately are

bases of the function spaces they generate. Together they generate the same space

as Φj+1(x), as can be seen from (10). As Φj+1(x) has less functions than Ψj(x)
and Φj(x) combined, Ψj(x) and Φj(x) contain dependent functions.
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The overcompleteness is one of the features that distinguishes the Multiscale

Local Polynomial Transform from a Fast Wavelet Transform, sometimes referred

to as the critically downsampled wavelet transform. In a Fast Wavelet Transform

the number of coefficients at the output equals the size of the input data. Fast

Wavelet Transforms can be constructed on top of a scheme that is similar to (3).

The difference is that the offsets are computed only in the complementary index

set e′(j + 1) = {1, . . . , nj+1}\e(j + 1),

dj = D−1
j (sj+1,e′ −Pjsj), (11)

where Pj is now a matrix of size (nj+1 − nj)× nj .

In some applications and with specific choices of Pj , decompositions as in

(3) are known as Laplacian pyramids [Burt and Adelson, 1983]. Laplacian pyra-

mids are less redundant than the nondecimated version of a wavelet transform,

also known as cycle spinning transform, stationary transform, translation invariant

transform, à trous or maximum overlap transform. The nondecimated version of

the wavelet transform has an output of size (J − L+ 1) · n = O(n log2(n)).
A Laplacian pyramid shares some of the benefits of a nondecimated wavelet

transform, in particular the smoothing effect of a reconstruction from an overcom-

plete representation [Jansen, 2014]. The main motivation for using the Laplacian

pyramid in the context of this paper, is that critical downsampling may lead to

unsmooth, fractal-like reconstructions. Indeed, for a smooth reconstruction it is

necessary that the prediction in a point xj+1,ℓ with ℓ ∈ e′(j +1) tends to the value

in the adjacent point xj+1,k with k ∈ e(j + 1) when xj+1,ℓ tends to xj+1,k. This

continuity condition can be formulated as [Jansen, 2013]

lim
u→xj,k

Pj(u;xj) · sj = sj,k, (12)

for arbitrary sj . A matrix Pj(u;xj) that is constructed as a local polynomial

smoothing on xj does not satisfy the condition. In wavelet decompositions, fractal-

like reconstructions are avoided because the prediction Pj is either constructed as

an interpolation between the elements in e(j + 1), or it is just one operation in a

series of lifting steps that together define the offset dj . In that case, the wavelet

decomposition takes the form of an iterated filterbank

sj = H̃T
j sj+1 (13)

dj = G̃T
j sj+1, (14)

while the reconstruction is

sj+1 = Hjsj +Gjdj , (15)

where H̃j and Hj are nj+1 × nj matrices, while G̃T
j and Gj have size (nj+1 −

nj) × nj . In the general filterbank form, the coarsening through H̃T
j and the re-

finement through Hj cannot be the same smoothing operation. As a result, the
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redundant scheme of a Laplacian pyramid can also be seen as a framework to con-

struct multiscale decompositions where both forward and inverse transforms are

based on a single smoothing operation, Pj , and where the reconstruction does not

suffer from fractal effects.

Yet another effect of the redundancy in a Laplacian pyramid is that the inverse

transform in (6) does not depend on the prefilter (2), which illustrates the flexibility

in the design of the prefilter. The inverse transform is not unique, the reconstruction

in (6) being just one of the possible solutions. Other reconstructions may depend

on the prefilter [Do and Vetterli, 2003, Jansen, 2013].

An interesting comparison between the Fast Wavelet Transform, the Nondeci-

mated Wavelet Transform and the Multiscale Local Polynomial Transform follows

from the next argument, making clear that the Multiscale Local Polynomial Trans-

form has a smoothing effect beyond the reconstruction from an overcomplete rep-

resentation. Given the wavelet filters in (13), (14), and (15), consider the operation

that first refines sj without adding any details (i.e., dj = 0j) and then decomposes

back in to coarse scaling and detail coefficients. This operation is given by the

following two expressions.

s
′
j = H̃T

j Hjsj,

d
′
j = G̃T

j Hjsj .

Since the critically downsampled wavelet transform and its inverse verify the per-

fect reconstruction property that

[
H̃T

j

G̃T
j

] [
Hj Gj

]
= Ij+1 =

[
Hj Gj

] [ H̃T
j

G̃T
j

]
,

it follows that s′j = sj and d
′
j = dj = 0j , which implies that H̃T

j Hj = Ij .

In the case of a nondecimated wavelet transform, H̃T
j Hj becomes a — possibly

non-orthogonal — projection. Although it is no longer the identity matrix, repeated

application of refinement and decomposition has a one-time effect only. This is

not the case in a multiscale local polynomial decomposition, where decomposition

after refinement is given by F̃T
j Pj . This operation has a smoothing effect, even

when applied repeatedly, except for inputs sj that are exactly polynomial.

3 Orthogonal prefilters

The local polynomial prediction is at the heart of the refinement scheme (8). The

choices of the bandwidths and the degree of the polynomials determine the proper-

ties of the basis functions Φj(x) in (7), and hence, these parameters fix the smooth-

ness characteristics of any reconstruction. The design of the prediction operation

takes the irregularity of the vector of covariates, xj+1 into account. The scale of

the prediction operation is controlled by the explicit choice of the bandwidth.
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All of this is in contrast to the design of the prefilter in (2). The prefilter plays

no role in the reconstruction, and therefore it has no influence on its smoothness.

Instead, its main role is to reduce the variance of the scaling coefficients when

proceeding from fine to coarse scales. To this end, there is no need to include

a bandwidth in the definition of the prefilter. The idea is that when nj+1 coeffi-

cients in sj+1 are approximated by nj coefficients in sj , then each coarse scale

coefficient should more or less represent an average of nj+1/nj fine scale coef-

ficients. The ambition is thus to obtain a variance reduction so that var(sj,k) =
(nj/nj+1)var(sj+1,2k), at least when all sj+1,k, k = 1, . . . nj+1 are uncorrelated.

In the particular case of dyadic subsampling, we impose that var(sj,k) = var(sj+1,2k)/2,

except possibly for coefficients at the end points.

Moreover, we impose that the rows of the prefilter matrix F̃j are orthogonal to

each other. With Ij the nj × nj identity matrix, this is

F̃jF̃
T
j =

(
nj

nj+1

)
Ij = Ij/2, (16)

the last equality holding for the special case of dyadic subsampling. The orthog-

onality ensures that homoscedastic uncorrelated fine scale coefficients are trans-

formed into homoscedastic uncorrelated coarse scale coefficients. This is the easi-

est way to control the covariance structure at all scales. It reduces the computation

time for the covariance structure of the detail coefficients Dj at scale j. This struc-

ture only depends on the prediction operation at that scale, not on any preceding

prefiltering.

A second objective for the prefilter is that it should preserve polynomials up to

scale p̃− 1, where p̃ is the polynomial order of the prediction operation, as defined

in (4). With X
(p̃)
j defined in (5), this condition can be expressed as

F̃jX
(p̃)
j+1 = X

(p̃)
j = J̃jX

(p̃)
j+1. (17)

Polynomial reproduction and orthogonality induce a limit on the variance re-

duction, as stated by the following result.

Lemma 1 Any prefilter F̃j for which F̃jF̃
T
j = D̃j , with D̃j a diagonal matrix and

for which F̃j1j+1 = 1j , where 1j is a vector with all nj entries equal to 1, satisfies

Tr(D̃j)/nj ≥ nj/nj+1, (18)

where Tr(A) denotes the trace of a square matrix A. In particular, if D̃j =
γIj , then γ ≥ nj/nj+1, meaning that the variance reduction cannot exceed the

subsampling rate.

Proof.

We have Tr(D̃j) = Tr(D̃j1j1
T
j ) = Tr(1Tj D̃j1j) = 1Tj D̃j1j = 1Tj F̃jF̃

T
j 1j =

‖F̃T
j 1j‖22. So, we are minimising the 2-norm of a nj+1 sized vector, F̃T

j 1j . Using
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the constant reproduction (i.e., the first vanishing moment), its components add up

to 1Tj+1F̃
T
j 1j = 1Tj 1j = nj , thereby defining a constrained optimisation problem,

whose solution is obtained by taking the same value for all components F̃T
j 1j =

1j+1(nj/nj+1). This vector has the minimum norm as stated in the Lemma. ✷

The result in Lemma 1 states that the objective in (16) could be feasible. It

does, however, not guarantee the existence of a prefilter satisfying (16).

Moreover, a good prefilter should also satisfy a third objective, which is that

the matrix F̃j should show a sort of band structure or diagonal dominance. Indeed,

a coarse scale coefficient sj,k should get input from fine scale coefficients situated

near xj,k = x1+1,2k. The matrix F̃j should therefore be “close” to simple subsam-

pling. The following result puts a limit to the feasibility of this objective. More

precisely, it provides a lower bound on the number of nonzeros at each row of F̃j .

Lemma 2 Let xj = J̃jxj+1 be an even-odd subsampling operation and let F̃j

be an orthogonal prefilter satisfying (16) and (17), so that (F̃j)km = 0 if m 6∈
{2k − l + 1, . . . , 2k + r}, then r − l ≥ 2p̃ + 4, unless symmetry in the covariate

values allows some of the nonzeros to vanish.

Proof. See Appendix B.

The Appendix B also explores the exceptional case of equidistant covariates,

where all rows of F̃j are all translations of each other with just 2p̃ nonzero ele-

ments. The elements do not depend on level j, and can be found by solving the

system of linear and nonlinear equations

p̃∑

k=−p̃+1

F̃ 2
k = 1/2 (19)

p̃∑

k=−p̃+1

F̃kF̃k+2s = 0 for s ∈ {1, . . . p̃− 1} (20)

p̃∑

k=−p̃+1

F̃k = 1 (21)

p̃∑

k=−p̃+1

ksF̃k = 0 for s ∈ {1, . . . p̃− 1}. (22)

These prefilters are closely related to the Daubechies orthogonal wavelet filters

[Daubechies, 1992]. The design for these wavelet filters is, however, based on

vanishing moments of the corresponding mother wavelet basis function. This is in

contrast to the vanishing moment conditions in (22), which are stated in terms of

polynomials evaluated in the equidistant covariate values, without any link to the

basis functions. In proper wavelet analyses, it is not possible to work on covariate

values without taking the basis functions into account. This could induce errors

termed “the wavelet crime” [Strang and Nguyen, 1996].

9



We now develop conditions (16) and (17), checking the existence of an or-

thogonal, polynomial preserving prefilter with the best possible variance reduction.

Since expression (17) can be read as F̃j − J̃j being in the left null space of X
(p̃)
j+1,

we can write

F̃j − J̃j = ŨjṼj , (23)

where the rows of the (nj+1 − p̃)×nj+1 matrix Ṽj constitute an orthogonal basis

for the left null space of X
(p̃)
j+1, and Ũj is an unknown nj×(nj+1−p̃) matrix, taken

so that F̃j has orthogonal rows as in (16). Since the maximum variance reduction

in (16) is not guaranteed, we impose for the moment that F̃jF̃
T
j = γjIj, hoping

to find a matrix Ũj for a value γj as close as possible to nj/nj+1 = 1/2. Using

Ij = J̃j J̃
T
j , the orthogonality condition, (ŨjṼj + J̃j)(ŨjṼj + J̃j)

T = γjIj, can

be developed as

(Ũj + J̃jṼ
T
j )(Ũj + J̃jṼ

T
j )

T = J̃jṼ
T
j Ṽj J̃

T
j − (1− γj)Ij.

For γj = 1, this system has a trivial solution Ũj = 0, i.e., F̃j = J̃j . Otherwise,

for 1
2 ≤ γj ≤ 1, that is, the right hand side, being independent from the choice of

the orthogonal basis Ṽj , can be factorised as

J̃jṼ
T
j ṼjJ̃

T
j − (1− γj)Ij = Ẽj

(
Λ̃j − (1− γj)Ij

)
ẼT

j ,

where Λ̃j is a diagonal matrix containing the eigenvalues of J̃jṼ
T
j Ṽj J̃

T
j while

Ẽj has the corresponding eigenvectors as its columns. Let λ̃j,min be the smallest

element on the diagonal of Λ̃j and let γj > 1− λ̃j,min, then we can define the real

matrix

S̃j = Ẽj

(
Λ̃j − (1− γj)Ij

)1/2
ẼT

j . (24)

Then any solution Ũj in F̃j = ŨjṼj + J̃j can be written as

Ũj = S̃jQ̃j − J̃jṼ
T
j , (25)

where Q̃j is a nj × (nj+1 − p̃) matrix with orthogonal rows.

When p̃ = 2, the minimum value of γj is close to 1/2, as follows from the

subsequent result.

Lemma 3 Given a vector of nj+1 covariates xj+1. Let xj = J̃jxj+1 be a sub-

sampled version, where xj,k = xj+1,2k+2, for k = 0, . . . , nj and nj+1 > 2nj + 1,

meaning that the first and the last elements of xj+1 are not in xj . Then, with p̃ = 2,

define

ξj = (xj − xj+1)/(x2
j+1 − x

2
j+1)

1/2, (26)

and

ζj = 1− (xj − xj+1)2/(x2
j+1 − x

2
j+1). (27)
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Taking

γj ≥
nj

nj+1

[
1 +

1

2

(√
ζ2j + 4ξ2j − ζj

)]
, (28)

all elements of the diagonal matrix Λ̃j in (24) are positive, so there exists a real

matrix S̃j satisfying (24).

Proof. See Appendix C.

We thus find that if the prefilter preserves constant and linear functions, and if

points on the boundary are left out from the variance reduction, then the optimal

variance reduction can be nearly attained. Indeed, the values of ξj and ζj are

typically close to zero, as can be verified empirically, leading to γj just a bit above

nj/nj+1.

The result of Lemma 3 comes without any guarantee about diagonal domi-

nance as suggested in Lemma 2. Currently, we have no algorithm that finds a

bandmatrix with orthogonal rows for use as variance reducing prefilter, or even a

procedure that finds out if such a bandmatrix exists for a given variance reduction

γ. Instead, we propose to construct Q̃j in (25) as Q̃j = Q̃
[0]
j · Q̃[1]

j Q̃
[2]
j Q̃

[3]
j . . . ,

where Q̃
[0]
j is an nj × (nj+1 − p̃) matrix with orthogonal rows and Q̃

[i]
j are ele-

mentary orthogonal matrices of size (nj+1 − p̃) × (nj+1 − p̃). These elementary

operations transforms are typically Givens rotations or Householder reflections,

chosen to minimise ‖Ũ [i]
j ‖2F , where Ũ

[i]
j = S̃

[i−1]
j Q̃

[i]
j − J̃jṼ

T
j , and S̃

[i−1]
j =

S̃jQ̃
[0]
j Q̃

[1]
j . . . Q̃

[i−1]
j . More details about the construction of Ũ

[i]
j can be found

in Appendix A. In our experiments, the resulting prefilters do not have a band

structure, but most entries away from the diagonal are close to zero, while the band

with large entries is even narrower than that of a true band matrix in Lemma 2.

Unfortunately, the design and application of the prefilter require a bit more com-

putations than a band matrix multiplication.

4 The choice of the bandwidth

4.1 Random model for multiscale local polynomial offsets

As mentioned in Section 1, the design of Pj is based on a data smoothing tech-

nique, but Pj itself is a mere linear data transform that does not perform any

smoothing or estimation. The estimation takes place after the data transform,

mostly combining linear and nonlinear operations. The nonlinear operation is often

a thresholding rule or any other form of coefficient selection applied to the detail

coefficients at the fine resolution levels. The linear part of the processing mostly

operates on a coarse resolution level L or below. In most approaches, the linear

operation is simply the identity.

The bandwidth at a fine scale, i.e., for j between L and J−1, should be chosen

so that the detail coefficients at scale j are most ready for nonlinear processing, in

particular for thresholding: the small coefficients should be as small as possible
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while the large coefficients should be as sparse and as large as possible, carrying

all the essential information for a good approximation or estimation of the signal

f(x). The framework developed in this paper holds for data both with and without

errors.

More precisely, we assume that for any choice of the bandwidth hj , the result-

ing noise-free detail offsets dj,k can be considered as possibly dependent observa-

tions from a mixture of two random variables. The mixture is denoted by Dj . The

model takes the form Dj = MjDj;1+(1−Mj)Dj;0, where Dj;1 is a random model

for the large coefficients, and Dj;0 is a random model for the small coefficients. The

large coefficients are described by a double exponential law, Dj;1 ∼ Laplace(aj).
For the small coefficients we use a normal model Dj;0 ∼ N(0, τ2j ). The motivation

for this model is that the normal distribution is stable under linear combinations.

This property corresponds to the observation that small coefficients come from

the class of Lipschitz smooth functions, which is preserved under linear combina-

tions. Furthermore, the magnitude of the small coefficients depends primarily on

the bandwidth, not on the local design of covariates Xj [Fan and Gijbels, 1996].

Hence, there is no need to model any dependence of Dj;0 on Xj .

The random model also includes pj = P (Mj = 1), and we suppose that the

label Mj is independent from Dj;1 and from Dj;0. As definition for the Laplace

or double exponential density function, we adopt fDj;1(d; aj) = (aj/2)e
−aj |d|, for

d ∈ R, so that 1/aj = E(|Dj;1|).
Unlike the model for the small and large noise-free signal coefficients in Dj;0

and Dj;1, the model for the errors depends on the design points X . Indeed, let Z be

the vector of the independent, homoscedastic errors in the model (1). Furthermore,

let Tj be the matrix that maps the vector of observations onto the detail offsets at

scale j of a multiscale local polynomial transform, i.e.,

Tj = D−1
j (Ij+1 −PjF̃j)F̃j+1 . . . F̃J−1, (29)

so that dj = TjsJ . Then the covariance matrix of the transformed errors at scale

j equals cov(TjZ|X) = TjT
T
j σ

2. In this expression, Tj depends on the design

X . The model for the coefficients with errors is then

D̃j,k|X = Dj,k + σj,kZj,k,

where Zj,k is a standard normal random variable and σj,k = σκj,k with

κj,k =
√
(TjT

T
j )k,k. (30)

The density of the coefficients with errors can be written as f
D̃j,k|X

(d; pj , aj , τj, σj,k) =

pjg(d; aj , σj,k) + (1 − pj)φ(d/ǫj,k)/ǫj,k. In this expression, φ(x) is the standard

normal density, ǫj,k =
√
τ2j + σ2

j,k, and g(x; a, σ) is the convolution of the normal

and Laplacian densities, which is

g(d; a, σ) = f
D̃j;1

(d; a, σ) (31)
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=
a

2
φ

(
d

σ

)

1− Φ

(
d
σ + σa

)

φ
(
d
σ + σa

) +
Φ
(
d
σ − σa

)

φ
(
d
σ − σa

)


 ,

where Φ(x) is the standard normal distribution function. The corresponding cu-

mulative distribution function equals G(d; aj , σj,k), where

G(d; a, σ) = F
D̃j;m

(d; a, σ) (32)

= Φ

(
d

σ

)
+

1

2
φ

(
d

σ

)

1− Φ

(
d
σ + σa

)

φ
(
d
σ + σa

) −
Φ
(
d
σ − σa

)

φ
(
d
σ − σa

)


 .

The parameters of the mixture model, pj , aj , τj and σ allow us to model a cer-

tain degree of sparsity. The forthcoming application of this model will assume that

some of these parameters depend on the sample size n. Indeed, as the number of

observations f(xi)+σZi grows, while the number of singularities in f(x) remains

the same, it can be expected that the proportion of large offsets at scale j, pj tends

to zero. A typical behavior is

pj = O (log(n)/n) . (33)

At the same time, the few large offsets become more prominent. Indeed, as n
grows larger, so does the finest resolution level J in (29). Hence the number

of prefilters F̃i with j ≤ i < J increases, each having a variance reducing

effect as in (16) on uncorrelated, homoscedastic errors. For Z i.i.d., we find

that var ((TjZ)k) = (nj/nJ)var(Zi), hence, using dyadic subsampling and with

Dj = Ij+1 independently from n,

var(D̃j,k|Dj,k) = σ2
j,k = O

(
2j−J

)
.

This result states that J − j should be maximised in order to reduce the variance of

the errors as much as possible. In other words, the scale at which f(x) is observed

should be as fine as possible.

On the other hand, if f(x) is Lipschitz ν continuous with ν ≥ p̃, then the

detail offsets at scale j from the observations f(xJ,k) have an order of magnitude

|dj,k| = O
(
hp̃j

)
, again taking Dj = Ij+1. This result is independent from J

and independent from the grid of covariate values. It states that the scale hj at

which the data are processed should be as fine as possible in order to reduce the

approximation error to a minimum.

Therefore, the asymptotic analysis will assume that the working scale hj tends

to zero and at the same time that J − j grows (slowly) to infinity, so that hJ tends

to zero slightly faster.

Finally, when f(x) contains singularities, one can expect that the offsets near

the singularities are of order |dj,k| = O(1), again if Dj = Ij+1. From here

on, we will assume that Dj includes a standardisation of order O
(
2(J−j)/2

)
, so

13



that σ2
j,k = O(1), τ2j = var(Dj;0) = O

(
2J−jh2p̃j

)
and 1/a2j = var(Dj;1) =

O
(
2J−j

)
, from which we typically find

aj = O
(
2(J−j)/2

)
. (34)

4.2 Maximum likelihood bandwidth

For any value of the bandwidth hj , the resulting detail offsets are modelled as

instances from one member of the mixture distribution (31), with bandwidth de-

pendent values of the parameters pj , aj , τj and σj,k. This approach leads to two

questions to deal with. One question is how to use the observed offsets dj to

estimate from which member of the model (31) they come from. The other ques-

tion is which member of the model (31) performs best for use in nonlinear sparse

processing. Both questions will be addressed by a maximum likelihood argument.

As for the issue how to choose among the possible members of the family

in (31), several criteria can be established, based on the values of pj , aj , τj and

σj,k. For instance, pj should be as small as possible, because a model with small

pj concentrates all the essential information about f(x) in a limited number of

large coefficients. The small coefficient parameter τj and the error parameter σj,k,

should also be as as small as possible.

As an overall criterion for sparsity of description, we use the minimum work-

ing independence entropy or, equivalently, the maximum working independence

expected log-likelihood of a model. We thus maximise

ℓ(hj ; pj , aj , τj, σ) = (35)

1

nj+1

nj+1∑

k=1

E
D̃j,k|X

[
log(f

D̃j,k|X
(D̃j,k|X; pj , aj , τj, σj,k))

]
,

where the three parameters pj, aj , τj are a function of hj , while the fourth, σj,k =
σκj,k depends on hj through κj,k, but depends too on σ, the standard deviation

of the errors, which is not controlled by the maximum expected log-likelihood

routine. In (35) the coefficients are evaluated as if they were independent obser-

vations. This is not only for reasons of computational complexity. An assessment

taking the dependence structures into account would be more tolerant of a group

of large coefficients, all linked to a single singularity. The objective is, however,

to keep the number of large coefficients limited. Another argument for evaluating

every coefficient separately is that, like wavelet transforms, multiscale local poly-

nomial transforms are used for decomposing signals into coefficients that can be

further processed separately, for instance by thresholding.

In practice, ℓ(hj ; pj, aj , τj , σ) is estimated by

ℓ̂(hj ; p̂j, âj , τ̂j , σ̂) = (36)

1

nj+1

nj+1∑

k=1

log(f
D̃j,k|X

(d̃j,k(hj); p̂j, âj, τ̂j, σ̂κj,k)).
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The estimators (p̂j, âj, τ̂j, σ̂) follow from the observations dj , and for this, we also

use a maximum likelihood approach, meaning that the estimators maximise

ℓ̂(hj ; pj , aj , τj , σ) =

1

nj+1

nj+1∑

k=1

log(f
D̃j,k|X

(d̃j,k(hj); pj , aj , τj , σκj,k)).

Remark 1 The problem in (35) is not a variable or model selection procedure in

the classical sense, because the setting does not include a “true model” or data

generating process, and no divergence from this true model, such as a Kullback-

Leibler distance. Nor is there a balance between model complexity and goodness

of fit. Instead, all models in (31) are equal in complexity, and all are assumed to

be correct models for a given bandwidth hj . The best model is the one that has the

most “interesting” parameter values, in the sense that it generates, on average, the

most structured or sparse coefficients.

Remark 2 Due to the double use of the sample likelihood for (1) the estima-

tion of the expected likelihood and (2) for the estimation of the parameters by

sample likelihood optimisation, the estimator ℓ̂(hj ; p̂j, âj, τ̂j, σ̂) is biased w.r.t.

ℓ(hj ; pj , aj , τj, σ). Given the limited number of parameters in the model, four to

be precise, the bias is limited and not much influenced by the bandwidth. This can

be understood from the analogy with the interpretation of the penalty in Akaike’s

Information Criterion as a bias correction term.

4.3 Approximation of the maximum joint likelihood estimators

The 4D maximisation is a computationally complex and ill-conditioned problem.

Therefore, we approximate f
D̃j,k|X

(d; p, a, τ, σ) in a way that reduces the optimi-

sation to a trivial task.

To this end, we define an observable label M̃j,k ∈ {0, 1} where M̃j,k =

1 ⇔ |D̃j,k| > λjǫj,k, with λj =
√
2 log(nj+1) and, as in Section 4.1, ǫj,k =

√
τ2j + σ2

j,k. Furthermore, let p̃λ;j,k = P (M̃j,k = 1|X), then

f
D̃j,k|X

(d; pj , aj , τj , σj)

= p̃λ;j,kfD̃j,k|M̃j,k=1,X
(d; pj , aj , τj , σj)

+(1− p̃λ;j,k)fD̃j,k|M̃j,k=0,X
(d; pj , aj , τj , σj).

The two conditional densities can be approximated. The small coefficients are

assumed to be predominantly normal. More precisely,

f
D̃j,k|M̃j,k=0,X

(d; pj , aj , τj, σj) ≈ f̃0(d; ǫj,k, λj)

=
1

ǫj,k

φ
(

d
ǫj,k

)

2Φ (λj)− 1
.
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The large coefficients are predominantly Laplacian, so

f
D̃j,k|M̃j,k=1,X

(d; pj , aj , τj , σj) ≈ f̃1(d; aj , λjǫj,k)

=
(aj/2) exp(−aj|d|)
exp(−ajλjǫj,k)

= (aj/2) exp(−aj(|d| − λjǫj,k)).

Writing

f̃
D̃j,k|X

(x) = p̃λ;j,kf̃1(d; aj , λjǫj,k)I (|d| ≥ λjǫj,k)

+(1− p̃λ;j,k)f̃0(d; ǫj,k, λj)I (|d| < λjǫj,k)

we have

E
D̃j,k|X

[
log(f

D̃j,k|X
(D̃j,k|X))

]
= (37)

E
D̃j,k|X

[
log(f̃

D̃j,k|X
(D̃j,k|X))

]
+R(pj, aj , τj , σj,k),

where R(pj, aj , τj , σj,k) is the Kullback-Leibler distance between the true and

approximative model. Appendix D investigates the asymptotic behavior of the

Kullback-Leibler distance. It finds that when pj and aj tend to zero for n growing

large, and if we take λ not too large neither too small, then R(pj, aj , τj , σj,k) → 0,

while

E
D̃j,k|X

[
log(f

D̃j,k|X
(D̃j,k|X))

]
≍ 1.

The threshold λ should not be too small, meaning that for n → ∞, exp(−λ2/2)/aj →
0. Otherwise, the proportion of falsely selected small coefficients is too large. The

threshold should not be too large either, meaning that aλ → 0. Otherwise, too

many large coefficients are misclassified as small. As the expected magnitude of

these coefficients is 1/aj , the condition aλ → 0 amounts to the statement that λ
should grow slower than the average large offset.

These conditions are met when pj and aj behave as in (33) and (34) respec-

tively, and when we take

λ =
√
2 log(n). (38)

The log-likelihood in (36) can now be approximated by

ℓ̂
f̃
(hj ; p̂j , âj, τ̂j, σ̂)

=
1

nj+1

nj+1∑

k=1

log(f̃
D̃j,k|X

(d̃j,k(hj); p̂j, âj, τ̂j, σ̂κj,k))

=
1

nj+1

∑

k∈Jj;1

log(p̂λ,j f̃1(d̃j,k; âj , λj ǫ̂j,k))

+
1

nj+1

∑

k∈Jj;0

log((1− p̂λ,j)f̃0(d̃j,k; ǫ̂j,k, λj)).

In this expression we used Jj;m = {k ∈ {1, . . . , nj+1}, M̃j,k = m}.
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Writing n̂j;m for the cardinality of Jj;m, the estimators can be substituted by

their maximum likelihood values

p̂λ,j = n̂j;1/nj+1,

âj = n̂j;1


 ∑

k∈Jj;1

(
|d̃j,k| − λj ǫ̂j,k

)


−1

= n̂j;1


 ∑

k∈Jj;1

∣∣∣ST(d̃j,k, λj ǫ̂j,k)
∣∣∣



−1

,

ǫ̂2j,k = τ̂2 + σ̂2κ2j,k,

where ST(x, t) = I (|x| > t) sign(x) (|x| − t) is the soft-threshold function. The

values of σ̂2 and τ̂ can be found numerically by maximising

∑

k∈Jj;0

log
[
f̃0
(
d̃j,k;

√
τ̂2 + σ̂2κ2j,k

)]

= C −
∑

k∈Jj;0


 d̃2j,k

2
(
τ̂2 + σ̂2κ2j,k

) + log
(√

τ̂2 + σ̂2κ2j,k

)

 ,

with C = − (nj+1 − n̂j;1) log
(
2 [Φ (λj)− 1]

√
2π
)

.

The log-likelihood expression to be optimised as a function of the bandwidth

thus becomes, in terms of observed values,

ℓ̂
f̃
(hj ; p̂j, âj, τ̂j, σ̂) = p̂j log (p̂j) + (1− p̂j) log (1− p̂j) (39)

−p̂j log


 2e

n̂j;1

∑

k∈Jj;1

∣∣∣ST(d̃j,k, λj ǫ̂j,k)
∣∣∣




− 1

nj+1

∑

k∈Jj;0

[
d̃2j,k/(2ǫ̂

2
j,k) + log(ǫ̂j,k)

]

− (1− p̂j) log(2π)/2.

5 Simulation study

5.1 Simulation setup

The random model for noise-free offsets in Section 4.1 allows us to simulate func-

tional data according to this model. More precisely, we generate test functions

that are sums of a smooth function and a random blocky function, i.e., f(x) =
fs(x) + fb(x). First, the covariate values in x are generated as the ordered sam-

ple of independent, uniform random variables on [0, 1]. Second, the block func-

tions are generated by picking at random a fixed number, say b, of uniformly dis-

tributed locations ξq ∈ [0, 1], together with jump magnitudes ηq and binary values
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Figure 1: (a) Twenty test functions f(x), generated for use in the simulation study.

Each test function is constructed as the sum of a random block fb(x) and a smooth

function fs(x), depicted in (b).

Tq ∈ {−1, 1}, so that

fb(x) =
b∑

q=1

η(q)Tqχ[ξ(q),1](x).

In this definition, χA(x) denotes the characteristic or indicator function on the set

A ⊂ [0, 1]. The magnitudes are uniformly distributed on [0, α], where we take here

α = 0.2. The magnitudes are sampled independently from each other, but the signs

Tq were taken from a binary Markov chain, so that P (Tq = t|Tq−1 = t) = 0.1.

This way, the blocks tend to be oscillating, rather than accumulating. Third, the

smooth function is generated from a multiscale local polynomial decomposition

consisting of J − L levels of detail coefficients d
′
j , j = L, . . . , J − 1 along with

the coarse level scaling coefficients s
′
L. The latter are taken to be zero, while we

set d′j,k = τjZj,k for j = L, . . . , J − 2, where all Zj,k ∼ N(0, 1) are independent,

standard normally distributed random variables. Note that we take the finest detail

offsets to be zero, i.e., d′
J−1 = 0. This is because we want to avoid small scale,

noise- or fractal-like behavior in the reconstruction

fs(x) =
J−2∑

j=L

Ψj(x)d
′
j ,

whose values can be found by the inverse transform, formalised as fx(x) = PJ−1s
′
J−1,

and s
′
j+1 = Pjs

′
j + d

′
j for j = L, . . . , J − 2. The detail offsets d

′
j are not the

eventual smooth offsets for use in the simulation, since the forward multiscale local

polynomial transform of fs(x) will generate different coefficients, as explained in

Section 2.3. As a result, the finest details coefficients for use in the simulation will

not be zero as is the vector d′
J−1.

The test functions in Figure 1 have b = 4 jumps in fb(x), while for the con-

struction of fs(x), the detail coefficients at scale j were sampled from a normal
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random variable with τj = τhp̃j,0. This is in accordance with the order of magni-

tude |dj,k| = O
(
hp̃j

)
discussed in Section 4.1. The parameter τ is set to one. For

reasons explained in Section 5.3, the bandwidths hj,0 used in this construction are

set to a heuristic value, linking the bandwidth to the subsampling rate.

hj,0 = h0 · (xj,nj
− xj,1) log(nj)/nj ≈ h0 log(nj)/nj , (40)

where the random smooth function generator takes h0 = 4.

Figure 2 has one of the test functions from Figure 1, this time observed with

additive normal errors. The standard deviation of the errors is set to σ = α/SNR,

with a signal-to-noise ratio SNR equal to 10 throughout the simulations.

5.2 Discussion

The smoothing predictions Pj at each level j operate independently from each

other. Indeed, applying Pj results in the detail offsets at scale j. These offsets play

no role in the calculation of the subsequent coefficients. As a result, the bandwidths

hj can be optimised separately, taking into account the features that are present on

the covariate values xj . Figure 3 depicts a plot of the log-likelihood curves (36)

in black solid lines and the easy-to-evaluate approximations of (39) in solid grey

lines. Both curves are plotted against the bandwidth divided by the heuristic value

hj,0 in (40), thereby taking h0 = 1. All curves were generated in the framework

of a multiscale local linear transform, i.e., taking p̃ = 2 applied to one of the test

functions in Figure 1 with n = 500 nonequispaced covariate values. The covariate

values were drawn uniformly on the interval [0, 1].
From figure 3 we see that (39) performs quite well as approximative and fast

evaluation of the likelihood curve. Also, the heuristic bandwidth is close to the

maximum likelihood bandwidth. The good performance of the heuristic band-

width, at least at the fine scales, is confirmed by replicating the experiment of

Figure 3 a hundred times, which is summarised in Figure 4. In this figure, the

heuristic bandwidths hj,0 appear as horizontal, dashed lines, while the results of

the bandwidth optimisation at each scale are plotted as line charts. As explained

in Section 5.3 below, the heuristic bandwidth is based on an argument of sparsity,

showing less relevance at coarse scales. Also for p̃ larger than two (local quadratic

or cubic smoothing), the heuristic bandwidth appears to be suboptimal.

5.3 The heuristic bandwidth

If the number of singularities, b, is small as compared to the size of the covariate

vector, nj , then the prefiltered observations at level j are dominated by long smooth

sections. In that case, the optimal bandwidth hj can be expected to be close to

the heuristic value hj,0 in (40), where h0 = 1. The heuristic value follows from

the requirement that all predictions in Pj have a sufficient number of evens for

the construction of the local polynomials. Let xj+1,2k+d, d ∈ {0, 1} be an even
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(d = 0) or odd (d = 1) point in which we compute a prediction based on the

Nj+1,2k+d values of xj,l = xj+1,2l for which |xj,l − xj+1,2k+d| < hj,0. Note

that if d = 0, then Nj+1,2k+d = Nj+1,2k must be at least one, because xj+1,2k

itself is an even point. Furthermore, assume that xj+1,k are ordered observations

from independent uniformly random variables, i.e., xj+1,k = u(k:nj+1). Then the

number of neighbours within distance hj,0 is binomial, and thus approximately

Poisson with expected value 2njhj,0, from which the probability function of the

number of even neighbours follows, for both d = 0 and d = 1. Writing µj =
njhj,0, straightforward calculations prove that

P (Nj+1,2k+1 = 0) = e−2µj ,

P (Nj+1,2k+1 = 1) = e−2µj (2µj + µ2
j),

P (Nj+1,2k = 1) = P (Nj+1,2k+1 = 0)

+P (Nj+1,2k+1 = 1),

and for any value r > 1, d ∈ {0, 1},

P (Nj+1,2k+d = r) = e−2µj

r−1∑

m=0

(
µ2m
j

(2m)!
+

µ2m+1
j

(2m+ 1)!

)

×
(

µ2r−2m−2
j

(2r − 2m− 2)!
+

µ2r−2m−1
j

(2r − 2m− 1)!

)
.

As a result, the expected proportion of deficient predictions, pj,d, is of the order

pj,d = O
(
e−2µj

)
. As deficient predictions may result in relatively large offsets,

the proportion pj,d must not dominate the proportion of large offsets pj carrying

information about singularities. From (33), we have that pj = O (log(nj)/nj), so

we impose that njpj,d = o(log(nj)), which implies that nje
−2µj = o(log(nj)),

from which the heuristic bandwidth (40) follows.

Because of the logarithmic factor in (40), the bandwidth is a little bit larger

than the mean distance between the covariate values. Since the bandwidth operates

as the scale in the multiscale decomposition, this means that the scale used in the

decomposition is a bit larger than the average scale of the data. This is necessary

to deal with the irregularly spaced nature of the data. For equidistant data, the

logarithmic factor can be replaced by a constant.

The random function generator in Section 5.1 takes h0 = 4, which is larger than

the optimal value in a multiscale local polynomial analysis. The larger bandwidth

for generating smooth data is necessary because the model itself does not account

for any correlation between the detail coefficients in dj,k. The correlation plays

no role in the analysis, in a similar way that Besov spaces do not take correlations

between wavelet coefficients into account. For the generation of realistic functions,

adjacent coefficients should be correlated. Alternatively, the scale at which they are

generated, can be taken to be larger than the scale of the analysis.
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6 A real data example from the Sloan Digital Sky Survey

Since 2000, the Sloan Digital Sky Survey (SDSS) has been observing photometric

data and spectra from astronomical objects, typically galaxies, in the context of

a redshift survey and using an optical telescope at the Apache Point Observatory

in New Mexico, United States. The project has found nearly 50 million galaxies

so far. The observed spectra range from near-infrared to ultraviolet frequencies,

more precisely covering wavelengths from 380 to 920 nm (i.e.,from 3800 to 9200

Ångström). As the data are noisy, its analysis may include denoising as a prepro-

cessing step. Data are available through www.sdss.org, more specifically from

http://skyserver.sdss.org/dr12/en/tools/chart/navi.aspx.

In the equatorial coordinate system, the astronomical object whose spectrum is

studied in Figure 5 can be found at coordinates (132.86, 11.619) (the first coordi-

nate being the right ascension, the second being the declination). The object at this

location is a starburst galaxy.

The aim is to identify the typical emission and absorption lines in the observed

spectrum. These spectral lines have well known eigen wavelengths λe at emission.

Comparing the theoretical, emitted wavelength with the observed wavelengths λo,

allows us to estimate the redshift z defined by z = (λo − λe)/λe. As the object

under consideration has been found to have z = 0.1667298, we can use this value

to locate the expected emission and absorption lines on the observed spectrum. We

check whether these features are better preserved by a denoising based on multi-

scale local polynomial decomposition than with the “best-fit” preprocessing step

proposed in numerous publications on the SDSS project. The best-fit procedure

includes a uniscale cubic spline smoothing, see for instance, Anderson, e.a. [2012,

2014], Percival, e.a. [2010].

Figure 5 depicts the data together with the expected locations of the emission

and absorption lines.

The samples size here is n = 3858. The multiscale local polynomial decom-

position used in this analysis has two resolution levels only, using the heuristic

bandwidths, a cosine kernel function, and two vanishing moments, i.e., local linear

smoothing. As the data appear to be heteroscedastic, the variance σ2
j,k of the detail

coefficient dj,k at scale j, location k is estimated locally using a median filter on

the absolute values of the coefficients. The coefficients are then thresholded using

a scale and location dependent universal threshold λj,k =
√
2 log(nj)σ̂j,k. Recon-

struction from the denoising routine can be found in Figure 6, for comparison with

the uniscale “best-fit” method in 7.

From the comparison, we see that the multiscale local polynomial reconstruc-

tion is smoother. As smoothness is balanced with goodness of fit, this can be a

matter of tuning the parameters, including the choice of the threshold values and

the number of scales involved in the processing step. Nevertheless, we also see that

the multiscale polynomial reconstruction seems to better capture the local mean

value, especially for wavelengths around 870 nm and 910 nm. At the same time,

but not entirely visible from these zoomed figures, the small and large peaks are
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better reconstructed by the multiscale local polynomial approach. The latter obser-

vation is confirmed by plotting the residuals for each of the two procedure, giving

more outliers for the “best-fit” approach.

7 Conclusions

7.1 Summary of the algorithm

Given the signal-plus-noise model in (1), the forward multiscale local polynomial

transform proceeds as follows

• Assign the observations to the finest scaling coefficients, i.e., for J = ⌈log(n)⌉,

define sJ = Y and nJ = n, where n is the sample size, i.e., the length of

vector Y . This step also defines the finest covariate grid as xJ = x.

• Fix the coarsest resolution leven L < J . Typically L is a few levels below

J . Depending on the application, the coarsest level can be optimised in a

heuristic or an adaptive way. The choice of the coarsest resolution level

may also be postponed till after the calculations in each iteration step below,

thereby turning the for loop into a while loop.

• For decreasing value of j = J − 1, J − 2, . . . , L, indicating the resolution

level, do

– Subsample, i.e., choose nj < nj+1 and fix the subsampling matrix J̃j

as in Definition 1. Set xj = J̃jxj+1. In this paper, we adopt dyadic

subsampling, i.e., nj = ⌈nj+1/2⌉.

– Design the local polynomial prediction Pj . Choose the degree of the

polynomial, p̃− 1 to be one or higher, so that the function f(x) = x is

reconstructed exactly. This avoids the unequispaced covariate locations

to be reflected in the reconstruction of processed coefficients.

Also fix the bandwidth at level j, hj . At this point, take the heuristic

value of (40) and Section 5.3.

– Design the prefilter F̃j for given Pj . In particular, make sure that

the prefilter preserves at least all polynomials of degree p̃ − 1. This

paper concentrates on orthogonal variance reducing prefilters for use

in statistical applications, using the iterative procedure in (25). Other

prefilters have been proposed in [Jansen, 2013].

– Apply the prefilter, as in (2).

– Apply the local polynomial prediction, as in (3). At this moment, the

bandwidth can be finetuned in a data-adaptive way, by optimisation of

the likelihood as in (36).
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• Next to the coarse scale coefficients sL and the details at all intermediate

levels dj , j = L, . . . , J1, the forward transform may deliver also the values

of the bandwidths used at each scale.

The implementation of this algorithm, as well as all others used in this paper

can be found in the latest version of ThreshLab, a Matlab R©software package

available for download from

http://homepages.ulb.ac.be/˜majansen/software/threshlab.

html.

The forward and inverse Multiscale Local Polynomial Transforms are carried

out by the routines FMLPT1D.m and IMLPT1D.m. The prefilter is implemented

in

prefilterorthnotsparseSTCO.m and dependent routines.

7.2 Discussion

The multiscale local polynomial transform is an alternative for the wavelet trans-

form. It combines the benefits of smoothness offered by a uniscale local polyno-

mial smoothing with those of sparsity in a multiscale decomposition. It has several

specific advantages, especially for the analysis of nonequispaced data. First, its

design uses the same operation in the forward and inverse transforms, making it

easier and more intuitive than the filter banks in a fast wavelet transform. Second,

the design can be based on smoothing, rather than on interpolation. Interpolation

may induce fluctuations and therefore it may lead to unpleasant numerical effects.

Third, the bandwidth operates as an explicit scale in the multiscale decomposi-

tion, thereby allowing the user to adapt the choice of the successive scales in the

transform to the application at hand. Fourth, the transformation operates directly

on the observations. There is no need for some preprocessing step to avoid the

“wavelet crime” or to map the nonequidistant data onto an equidistant grid. Fifth,

the transformation may include an additional prefilter step for fine-tuning and vari-

ance reduction. As this step has no repercussions on the central smoothing step,

both steps can be designed separately.

This paper has investigated the optimal choice of the bandwidth. It has come

to the conclusion that the optimal bandwidth is typically a logarithmic factor larger

than the average scale of the data, to account for the intermittent space between the

covariate values.

The extension of the proposed transform towards multivariate data and to the

design of application specific data decompositions are themes of ongoing research.
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A Construction of prefilters using elementary orthogonal

matrices

This sections develops more details on the construction of prefilters using the form

in (25). We assume that appropriate choices of γj and J̃j allow us to define a real

matrix S̃j in (24). In particular, as in Lemma 3, the subsampling operation J̃j

leaves out not only the odd indices from sj+1, but also p̃ − (2nj − nj+1) even

indices near the boundary. Near the boundary, the filtering is replaced by simple

subsampling, meaning for instance that sj,0 =j+1,0, thus allowing us to focus on

the interior. Obviously, alternative solutions may filter near the boundary, at the

price of slightly less variance reduction in the interior.

The initial step of the iteration creates the matrix Ũ
[0]
j = S̃jQ̃

[0]
j −J̃jṼ

T
j .As the

primary goal of this step is to map the nj × nj matrix S̃j onto the nj × (nj+1 − p̃)

matrix S̃
[0]
j = S̃jQ̃

[0]
j , the matrix Q̃

[0]
j is chosen to be a possibly row-permuted

submatrix of the (nj+1 − p̃) × (nj+1 − p̃) identity matrix. The resulting matrix

S̃
[0]
j contains the columns of S̃j completed with zero columns. Since ‖A−B‖2F =

‖A‖2F + ‖B‖2F − 2Tr(ATB), the norm of Ũ
[0]
j can be minimised by looking at the

maximum values in each row of S̃T
j

(
J̃jṼ

T
j

)
.

The next matrices Q̃
[i]
j consist of products of elementary Givens rotations or

reflections. More precisely,

Q̃
[i]
j = Q̃

[i,1]
j Q̃

[i,2]
j Q̃

[i,3]
j . . . ,

where the elements of Q̃
[i,ℓ]
j coincides with those of Ij , except in the 2×2 submatrix

at rows (r1, r2) and columns (r1, r2), where the couple (r1, r2) depends on ℓ. This

submatrix is equal to

[
bℓ 1− bℓ

1− bℓ bℓ

] [
cos(αℓ) sin(αℓ)
− sin(αℓ) cos(αℓ)

]
,

where the binary bℓ and the real αℓ ∈ [0, 2π] are chosen to minimize the Frobenius

norm of the outcome Ũ
[i,ℓ]
j = S̃

[i,ℓ−1]
j Q̃

[i,ℓ]
j −J̃jṼ

T
j . Since right multiplication with

Q̃
[i,ℓ]
j affects rows r1 and r2 only, the values of bℓ and αℓ are easy to find. A slight

modification consists in weighting the elements of the matrix in the calculation

of the Frobenius norm. More precisely, by putting zero weights on the elements

near the diagonal of Ũ
[i,ℓ]
j , this matrix and also F̃

[i,ℓ]
j are pushed towards diagonal

dominance.

B Proof of Lemma 2

First, the polynomial reproducing condition (17) represents nj p̃ linear equations,

independently from the number of zeros elements in F̃j . Second, the diagonal
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of (16) adds nj non-linear non-homogeneous equations. The homogeneous equa-

tions corresponding to the off-diagonals express orthogonality between rows of

F̃j . These equations are inactive if the nonzeros of the rows under consideration

have no overlap. Ignoring boundary effects, this amounts to ⌈(r − l)/2⌉− 1 active

equations on each row of (16). Third, from the proof of Lemma 1, it turns out that

(16) being the optimal variance reduction implies that all columns of F̃j add up to

the same value, more precisely F̃T
j 1j = 1j+1(nj/nj+1). These nj+1 equations for

column sums are linearly independent from the row sum equations in (17), except

for the last one. In total, we have at least O(nj p̃+nj+nj(⌈(r − l)/2⌉−1)+nj+1)
conditions, which is at least p̃+2+⌈(r − l)/2⌉ at each row. Therefore, the number

of free parameters at each row, r − l, must satisfy (r − l) ≥ p̃ + 2 + ⌈(r − l)/2⌉,

which leads to the stated result. ✷

In the case of equidistant covariate values, the prefilter F̃j has only 2p̃ nonzeros

on each row. This can be understood from the fact that for equidistant covariates,

F̃j = J̃jFj , where is Fj a Toeplitz matrix. The proof of Lemma 1 reveals that

in the general case nj+1 − 1 linear equations follow from minimising the output

variance, namely that all column sums F̃T
j 1j have the same value. For F̃j = J̃jFj ,

with Fj Toeplitz, all even column sums are automatically equal to each other, and

the same holds for the odd column sums, thereby reducing nj+1−1 linear equations

to a single equation. This subtracts the value two from the number of nonzeros on

each row. But because of that, there is less overlap between rows, giving us a bonus

reduction of two elements.
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Figure 2: One of the test functions f(x) in Figure 1, along with additive normal

errors.
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Figure 3: Black lines: likelihood curves (36) for one of the test functions in Fig-

ure 1, grey lines: easy-to-evaluate approximations (39) at four resolution levels as

a function of the bandwidth, normalised with the heuristic values given by (40).

Level J − 1 is the finest, level J − 4 is the coarsest.
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Figure 4: Solid line charts: maximum likelihood bandwidths at 4 scales for 100

replicates of the experiment in Figure 3. Dashed lines: heuristic values of (40).
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Figure 5: Spectrum for astronomical object (starburst galaxy) at equatorial coordi-

nates (132.86, 11.619). Raw data, with indicators to a selection of emission lines

(downwards arrows) and absorption lines (upwards arrows). The spectral lines are

computed from the emitted values and the redshift.
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Figure 6: Multiscale local polynomial based estimated spectrum from Figure 5,

together with the raw data in background grey. The vertical scale has been zoomed

in compared to Figure 5.
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Figure 7: “Best-fit” Anderson, e.a. [2012, 2014], Percival, e.a. [2010] estimation

of the spectrum from Figure 5, based on, among others, a uniscale cubic spline

smoothing.
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C Proof of Lemma 3

In this proof, J̃j denotes a partitioning operation, which can be more general than

the even-odd subsampling.

Let X̃
(2)
j+1 be the orthonormalised columns of X

(2)
j+1, i.e., (X̃

(2)
j+1)i,1 = n

−1/2
j+1

and (X̃
(2)
j+1)i,2 = n

−1/2
j+1 (xj+1,i − xj+1)/(x2

j+1 − x
2
j+1)

1/2. Then for any vector c

of length nj , we have

c
T J̃j(Ṽ

T
j Ṽj−(1−γj)Ij+1)J̃

T
j c = c

T J̃jṼ
T
j Ṽj J̃

T
j c−(1−γj)c

T J̃j J̃
T
j c = ‖Ṽj J̃

T
j c‖22−(1−γj)‖J̃T

j c‖22.

As [X̃
(2)
j+1Ṽ

T
j ] constitutes an orthogonal matrix, we have ‖X̃(2)T

j+1 J̃
T
j c‖22+‖Ṽj J̃

T
j c‖22 =

‖J̃T
j c‖22 = ‖c‖22. From this it follows that

c
T J̃j(Ṽ

T
j Ṽj − (1− γj)Ij+1)J̃

T
j c ≥ 0 ⇔ ‖X̃(2)T

j+1 J̃
T
j c‖22 ≤ γj‖c‖22.

This holds for any vector c if ‖X̃(2)T
j+1 J̃

T
j ‖22 = ‖J̃jX̃

(2)
j+1‖22 ≤ γj. By writing ρ(A)

for the spectral radius of matrix A, the squared matrix norm is

‖J̃jX̃j+1‖22 = ρ(X̃
(2)T
j+1 J̃

T
j J̃jX̃j+1) =

nj

nj+1
ρ

([
1 ξj
ξj 1− ζj

])
,

with ξj and ζj as defined in (26) and (27). The squared matrix norm is equal to the

minimum value of γj proposed in (28). ✷

D Kullback-Leibler divergence of the approximative mix-

ture model in Section 4.3

The error term in (37) consists of two terms R(pj , aj , τj, σj,k) = R0(pj , aj , τj , σj,k, λj)+
R1(pj , aj , τj , σj,k, λj). These terms are defined as

R0(pj , aj , τj , σj,k, λj) = E
D̃j,k|X


log




f
D̃j,k|X

(D̃j,k|X))

(1− p̃λ;j,k)f̃0(D̃j,k; ǫj,k, λj)


 I(M̃j,k = 0|X)


 ,

R1(pj , aj , τj , σj,k, λj) = E
D̃j,k|X


log




f
D̃j,k|X

(D̃j,k|X))

p̃λ;j,kf̃1(D̃j,k; aj , λjǫj,k)


 I(M̃j,k = 1|X)


 .

Since

log




f
D̃j,k|X

(u)

(1− p̃λ;j,k)f̃0(u)


 = log(2Φ (λj)−1)−log(1−p̃λ;j,k)+log

[
1 + pj

(
g(u; aj , σj,k)

φ (u/ǫj,k) /ǫj,k
− 1

)]
,

we can rewrite

R0(pj , aj , τj , σj,k, λj) = (1−p̃λ;j,k) [log(2Φ (λj)− 1)− log(1− p̃λ;j,k)]+R00(pj; aj , τj , σj,k, λj),
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where the following definition of R00 uses the short notation ǫ =
√
σ2 + τ2,

R00(p; a, τ, σ, λ) = E
D̃

(
log

[
1 + p

(
g(D̃;a,σ)

φǫ(D̃)
− 1

)]∣∣∣∣M̃ = 0

)
P (M̃ = 0)

= E
D̃

(
log

[
1 + p

(
g(D̃;a,σ)

φǫ(D̃)
− 1

)]∣∣∣∣M̃ = 0,M = 0

)
P (M = 0|M̃ = 0)P (M̃ = 0)

+ E
D̃

(
log

[
1 + p

(
g(D̃;a,σ)

φǫ(D̃)
− 1

)]∣∣∣∣M̃ = 0,M = 1

)
P (M = 1|M̃ = 0)P (M̃ = 0)

In this expression, we can bound the second factor of the second term by

P (M = 1|M̃ = 0) =
pP (|D̃| ≤ λǫ|M = 1)

pP (|D̃| ≤ λǫ|M = 1) + (1− p)P (|D̃| ≤ λǫ|M = 0)
≤ p,

provided that P (|D̃| ≤ d|M = 1) ≤ P (|D̃| ≤ d|M = 0) for any positive d, which

is true for aǫ sufficiently close to zero. In the first factor of the second term, we use

that g(u; a, σ)/φǫ(u) is symmetric on [−λǫ, λǫ] and non-decreasing on [0, λǫ],

E
D̃

(
log

[
1 + p

(
g(D̃; a, σ)

φǫ(D̃)
− 1

)]∣∣∣∣∣M̃ = 0,M = 1

)
≤ log

[
1 + p

(
g(λǫ; a, σ)

φǫ(λǫ)
− 1

)]
.

This factor is bounded below by −p/(1−p) and above by O(λ2), while the values

of a, σ, and ǫ have no impact on these bounds.

In the first term we have, for p small,

E
D̃

(
log

[
1 + p

(
g(D̃; a, σ)

φǫ(D̃)
− 1

)]∣∣∣∣∣M̃ = 0,M = 0

)
= pE

D̃

(
g(D̃; a, σ)

φǫ(D̃)
− 1

∣∣∣∣∣M̃ = 0,M = 0

)
+o(p).

This is further rewritten and bounded as

E
D̃

(
g(D̃; a, σ)

φǫ(D̃)
− 1

∣∣∣∣∣M̃ = 0,M = 0

)
=

∫ λǫ

−λǫ
[g(u; a, σ) − φǫ(d)]du ∈ [−1, 1].

All together, we have, for λ → ∞ and p → 0,

|R00(p; a, τ, σ, λ)| = O
(
p · 1 · 1 + λ2 · p · 1

)
= O

(
pλ2

)
.

ForR1(pj, aj , τj , σj,k, λj), we use that p̃λ = P (M̃ = 1|X) = p 2 [1−G(λǫ; a, σ)]+
(1− p) 2 [1− Φ(λ)] . For λǫ → ∞ and for a → 0, so that aλǫ → 0, it can be veri-

fied that G(λǫ; a, σ) → 0, and thus p̃λ/p → 1. The condition that aλǫ → 0 means

that λ → ∞, but not too fast, as otherwise, it would take away too many large

coefficients. Furthermore, as

R1(p, a, τ, σ, λ) = E

[
log

(
pg(D; a, σ) + (1− p)φ(D/ǫ)/ǫ

p̃λf̃1(D; a, λǫ)

)∣∣∣∣∣|D| > λǫ

]
P (|D| > λǫ) ,
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this term is bounded from below and from above by

p̃λ · log
(

p

p̃λ
inf

|d|>λǫ
r1(d) +

(1− p)

p̃λ
inf

|d|>λǫ
r0(d)

)
≤ R1(p, a, τ, σ, λ)

≤ p̃λ · log
(

p

p̃λ
sup
|d|>λǫ

r1(d) +
(1− p)

p̃λ
sup
|d|>λǫ

r0(d)

)
,

where r1(d) = g(d; a, σ)/f̃1(d; a, λǫ) and r0(d) = φ(d/ǫ)/ǫf̃1(d; a, λǫ). The

function r1(d) reaches a global minimum at d = 0, from where it increases mono-

tonically from r1(0) = 2[1−Φ(aσ)] exp(σ2a2/2) towards r1(±∞) = exp(σ2a2/2).
On ]−∞,−λǫ]∪[λǫ,∞[, and for λ > aǫ, the function r0(d) = φ(d/ǫ)/ǫf̃1(d; a, λǫ)
decreases monotonically and rapidly from r0(λǫ) = exp(−λ2/2)/

√
π/2aǫ to 0.

The bounds for R1(p, a, τ, σ, λ) are then

p̃λ · log
(

p

p̃λ
2[1 − Φ(aσ)] exp(σ2a2/2)

)
≤ R1(p, a, τ, σ, λ)

≤ p̃λ · log
(

p

p̃λ
exp(σ2a2/2) +

(1− p)

p̃λ

exp(−λ2/2)√
π/2aǫ

)
,

from which we conclude that R1(p, a, τ, σ, λ) ∼ p̃λ ∼ p, when a → 0 and λ → ∞,

so that exp(−λ2/)/a → 0. This means that λ should grow sufficiently fast in order

to prevent false positives from dominating the error term R1. ✷
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