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Abstract

The multiscale local polynomial transform (MLPT) is a combination of a kernel method for

nonparametric regression or density estimation with a projection onto a basis in a multiscale frame-

work. The MLPT is proposed for the estimation of densities with possibly one or more singular

points at unknown locations. The proposed estimator reformulates the density estimation problem as

a high-dimensional, sparse regression problem with asymptotically exponential response variables.

The covariates in this model are the observations from the unknown density themselves. The design

matrix comes from a novel extension of the MLPT for use on highly nonequidistant data.

keywordssparsity nonparametric local polynomial variable selection wavelets multiscale
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1 Introduction

This paper incorporates the local polynomial smoothing method into a wavelet-like multiscale decom-

position, termed the Multiscale Local Polynomial Transform (MLPT) [Jansen and Amghar, 2017]. The

contribution of this paper lies in the application of the MLPT in univariate density estimation. The den-

sity estimation problem is recognised as a naturally mutiscale problem, which in this paper is transformed

into a sparse, multiscale regression problem with exponentially distributed responses.

MLPT density estimation combines two classes of methods in nonparametric density estimation.

The first class is based on the use of a kernel function, K(x), which is mostly a continuous, symmetric,

nonnegative, unimodal function [Wand and Jones, 1995, Fan and Gijbels, 1996, Simonoff, 1996] The

prototype in this class of methods is the kernel density estimator

f̂X(x) =
1

nh

n∑

i=1

K

(
x−Xi

h

)
, (1)

estimating the unknown density fX(x) from the iid sample (X1,X2, . . . ,Xn). Expression (1) contains

the bandwidth h as a smoothing parameter, whose value is often finetuned in an optimisation of the

bias-variance trade-off. The method is fast and it requires few assumptions on fX(x) in the general,

regular settings. Problems occur, however, if fX(x) has discontinuities, singularities or bounded support.

For instance, if limx→x0 fX(x) = ∞ for some finite x0, then the estimator f̂X(x), being based on

a bounded kernel function, cannot possibly reproduce such singularity, thereby leading to a bias and

an inconsistency. If the position of x0 is known, then a transformation of the random variable X and

the observations Xi may induce a regular density to be estimated. Transformations in kernel density

estimations have been the topic of quite some contributions [Wand et al., 1991, Park et al., 1992, Yang

and Marron, 1999, Ruppert and Cline, 1994, Hossjer and Ruppert, 1995]. For densities with bounded

support, such as copulas, bias occurs near the boundaries because the plain kernel density estimator does

not sense the end points, and thus puts a positive value for the density outside the support. Knowing

the values of the end points a and b, it is possible to transform the observations using for instance the

probit function T = Φ−1((x − a)/(b − a)) in order to obtain an unbounded random variable. It has

been reported that the estimation procedure on the transformed observations should be designed with

the inverse transformation in mind. In particular, a global bandwidth for the transformed data does not

perform optimally with respect to the original domain [Geenens, 2014].

The second class of methods in nonparametric density estimation is based on the projection of fX(x)

onto a space generated by a set of basis functions,

fj(x) =

nj∑

k=1

sj,kϕj,k(x). (2)

In (2), the functions ϕj,k(x) are assumed to have a bounded quadratic norm and to be linearly inde-
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pendent, thus generating a subspace Vj ⊂ L2(R). The index j refers to a possible refinement of the

approximation, aiming of course at convergence for j → ∞. The projection generating the coefficients

is written as sj,k =
∫∞
−∞ fX(x)ϕ̃j,k(x)dx, where the dual basis functions ϕ̃j,k(x) satisfy the biorthogo-

nality condition
∫∞
−∞ ϕ̃j,k(x)ϕj,l(x)dx = δk,l, with δk,l the Kronecker-delta. Biorthogonality makes the

mapping of fX(x) onto fj(x) a projection, i.e., an idempotent mapping, meaning that fj(x) is projected

onto itself. The dual basis and the corresponding projection is not unique. As an example, the orthogonal

projection is found by ϕ̃j,k(x) =
∑nj−1

l=0 cj;k,lϕj,l(x),with cj;k,l the elements of the symmetric matrixCj

defined by its inverse
(
C−1
j

)
k,l

=
∫∞
−∞ ϕj,k(x)ϕj,l(x)dx. As fX(x) is the density of the observations,

the projection coefficients can be estimated unbiasedly by

ŝj,k =
1

n

n∑

i=1

ϕ̃j,k(Xi). (3)

The only source of bias in the density estimator f̂X(x) =
∑nj

k=1 ŝj,kϕj,k(x) comes from the approxi-

mation error fj(x) − fX(x). Points of attention for projection methods include the fact that the basis

functions are defined independently from the observations. This is in contrast to kernel based methods,

where the kernel functions are centered around the observations. With fixed, non data-adaptive basis

functions, subtle information about the precise location of the observations is lost, once the observa-

tions have been used for evaluation in (3). Another point of attention is the positivity of the estimator

f̂X(x), which needs to be enforced explicitly. An important representative of this class of methods uses

wavelets as basis functions [Hall and Patil, 1995, Donoho et al., 1996]. It is well known that wavelets

are of particular interest when the function to be estimated has singularities. Nonlinear wavelet methods

perform well in this case, thanks to their ability to sparsely represent data with jumps. In the case of

density estimation, a wavelet transform may thus be an alternative to a data transformation when the

density has singular points, especially when the precise location of the singular points is unknown. A

second argument for using wavelets holds also for smooth density functions. This argument focuses less

on the sparsity of the wavelet representation, and more on its multiscale nature. For obvious reasons,

the density of observations depends directly on the function to be estimated. As a result, the support

of the analysis functions in (3) or the bandwidth in the kernel approach (1) should be optimised in a

local way. In intervals of high density, the supports should be small enough to avoid unnecessary bias

in the estimations. In intervals of low density, the supports should be large, in order to gather enough

observations in each sum of (3). Both the support and the bandwidth represent the scale of the operation.

In the estimation of a density from its observations, the scale of the problem is an intermittent parameter,

making density estimation a natural multiscale problem.

Besides the loss of detailed information and the positivity issues in a projection method, the wavelet

density estimation also has a specific problem, namely the evaluation of ϕ̃j,k(Xi). In the course of the

fast wavelet transform algorithm, used in wavelet based nonparametric regression, the basis functions

ϕ̃j,k(x) are not evaluated explicitly. Moreover, in most cases, no closed form is available. An explicit
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evaluation in an arbitrary point as in (3) leads to a suboptimal numerical computations, as the fast wavelet

transform operates on dyadic (i.e., of the form k2−j , with k = 0, 1, . . . , 2j − 1), not on arbitrary knots.

This paper is organised as follows. Section 2 reviews the Multiscale Local Polynomial Transform.

When used on covariate values from uniform densities, this data decomposition is slightly overcomplete.

On highly irregular grids, with non uniformly distributed covariate values, the redundancy may get out

of control. Therefore, Subsection 2.2 introduces a new variant of the Multiscale Local Polynomial

Transform that keeps the redundancy under control for application on intermittent densities of knots.

Section 3 uses the classical techniques from wavelet theory to find the scaling basis functions. Theorem

1 states that polynomials can be reconstructed in a Multiscale Local Polynomial basis, using the function

values as coefficients. Thanks to this property the representation of any piecewise smooth function in a

Multiscale Local Polynomial basis may use function values as coefficients. This way, the decomposition

into a basis leads to expressions that are similar to those of Nadaraya-Watson or Gasser-Müller kernel

smoothing. Such a property is not generally available in wavelet decompositions on irregular knots, the

B-spline wavelets [Jansen, 2016] being an illustrative example.

Section 4 develops the density estimation within the MLPT framework, outined in Subsection 4.1.

In Subsection 4.2 first reformulates the density estimation as a nonparametric regression problem with

exponentially distributed responses. Next, in Subsection 4.3, the regression problem is formulated in

the sparse multiscale framework of the MLPT. As a fast forward and inverse map onto the sparse repre-

sentation is available, a threshold procedure is proposed. In Subsection 4.4, the choice of the threshold

through the optimisation of an information criterion is discussed.

A simulation study and a real data illustration follow in Sections 5 and 6. Finally, the concluding

discussion in Section 7 lays the path for future analysis of the proposed method. In particular, it explains

that the proposed work cannot be considered as a competitor, but rather as a complement to classical

kernel density estimation, because the domains of application do not overlap. Based on this observation,

the assignments for future asymptotic analysis are outlined.

2 The Multiscale Local Polynomial Transform

2.1 MLPT construction on uniformly distributed knots

In the first instance, the Multiscale Local Polynomial Transform (MLPT) is a slightly overcomplete

decomposition of approximations fJ(x) defined in (2), taking j = J , where J is the index referring to the

maximal refinement of the approximation. In practice, this finest resolution corresponds to the resolution

at which the observations take place. The numerical value of J is a matter of choice or convention. With

n the number of observations, the finest scale is typically referred to by J = ⌈log2(n)⌉, the smallest

integer equal or larger than log2(n). The input vector sJ contains the coefficients of the approximation

in (2). The basis functions ϕJ,k(x) are local in the sense that they are centered around knots xJ,k, in

a way that is developed further below. In the subsequent discussion, the knots will coincide with the
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covariates of the observations. The number of knots at the finest resolution, denoted by nJ , equals n.

The vector sJ will be obtained from the response values in the knots, fJ(xJ,k), typically observed with

noise, i.e., Yk = fJ(xJ,k) + σZk, where the precise model for the noise Zk is not important in this

discussion. The result in Theorem 1 will justify to simply take sJ,k = Yk.

The algorithm for the actual MLPT takes the input vector sJ to be transformed into an equivalent,

multiresolution decomposition, denoted by the vector vL, where L stands for the coarsest or lowest

resolution level. In order to arrive at resolution level L, the MLPT iterates over the resolution levels j =

J −1, J −2, . . . , L. In each step of its simplest form, the covariate vector is first dyadically subsampled,

meaning that the next, coarser level grid of covariate values consists of the even indexed fine level grid,

i.e., xj,k = xj+1,2k, for k = 0, 1, . . . , nj . The subsampled vector then has length nj = ⌈nj+1/2⌉.

More sophisticated versions may adopt other than dyadic subsampling schemes, defining the non-dyadic

partition e(j + 1) and o(j + 1) of the fine scale index set {1, 2, . . . , nj−1}. Non-dyadic subsampling is

particularly interesting on non-uniformly distributed covariate values. In the extreme case, the partition

splits off only one element of xj+1, i.e., o(j + 1) is a singleton. Although no longer corresponding to

the classical mathematical notions of even and odd, e(j + 1) and o(j + 1) will be referred to as the even

and odd subsets even in non-dyadic subsampling. The corresponding subvectors are denoted as xj+1,e

and xj+1,o. The odd points will also be termed refinement points, while the even points are said to be

the coarse scale grid. The resulting multiscale grid {xJ ,xJ−1, . . . ,xL} is a nested grid, meaning that

all knots at level j belong to the set of knots at finer level j + 1. The subsampling operation is denoted

by xj = xj+1,e = J̃jxj+1, with J̃j the nj × nj+1 subsampling matrix, formed by taking all even rows

of the nj+1 × nj+1 identity matrix.

The vector sj+1 is subsampled as well, being filtered at the occasion, using a nj × nj+1 prefilter F̃j

in s̃j = F̃jsj+1. The precise design of F̃j is closely connected to the choice of the forthcoming matrix

Uj . Along with a third matrix Pj , these matrices fix the properties of the MLPT. The vector s̃j can

be interpreted as a coarse scale approximation of sj+1. The offset between the fine scale vector and a

prediction based on the coarse scale approximation is the detail vector dj = sj+1 −Pj s̃j , which will be

stored as part of vL. Finally, the coarse scale approximation is updated by sj = s̃j +Ujdj , for use as

input in the next iteration step of the multiscale decomposition.

The design of the nj × nj+1 update matrix Uj follows in Section 3.1. In data smoothing [Jansen

and Amghar, 2017], the update can be omitted because the prefilter F̃j offers nearly the same benefits.

As explained in Section 3.1, however, in density estimation, the update is necessary to ensure that the

estimated density integrates to one. As a result, no prefilter is needed in this context, so we set F̃j = J̃j

for the remainder of this article. The nj+1 × nj prediction matrix Pj performs a local polynomial

estimation in xj+1 based on the values in s̃j and the covariates in xj . This matrix is defined as follows.

Definition 1 The local polynomial prediction matrix Pj at level j in a Multiscale Local Polynomial
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Transform of order p̃ has entries given by Pj;k,l = Pj,l(xj+1,k;xj) where

Pj,l(x;xj) = X(p̃)(x)

(
X

(p̃)
j

T
Wj(x)X

(p̃)
j

)−1(
X

(p̃)
j

T
Wj;l,l(x)

)
. (4)

In (4), X(p̃)(x) is a row matrix of power functions, X(p̃)(x) = [1x . . . xp̃−1]. The nj × p̃ matrix X
(p̃)
j

has elements X
(p̃)
j;k,r = xr−1

j,k . The nj × nj weight matrix Wj(x) has a diagonal structure with elements

Wj;l,l(x) = K
(
x−xj,l

hj

)
. Here, the function K(x) is the kernel function and hj is the bandwidth at

resolution level j.

The order p̃ is also termed the number of dual vanishing moments.

The output is composed as vL =
[
sL dL dL+1 . . . dJ−1

]
. The output has length nL +

∑J
j=L+1 nj = O(2nJ). The transform thus expands a vector of size nJ into a vector of twice that

size, following a scheme known in other applications and with other predictions as a Laplacian pyramid

[Burt and Adelson, 1983]. As the transform is overcomplete, the inverse transform is not unique. A

straightforward reconstruction first undoes the update s̃j = sj −Ujdj and then the prediction sj+1 =

Pj s̃j + dj . The two steps can be assembled into the reconstruction formula

sj+1 = (Ij+1 −PjUj)dj +Pjsj . (5)

The reconstruction in (5) does not depend on the prefilter F̃j . As a result, the design of the prefilter does

not need to take any effect from the reconstruction into account. In particular, a prefilter can be designed

without bothering about variance propagation in the reconstruction. This would be one of the benefits of

a prefilter above an update, were it not for the disadvantages in density estimation, developed in Section

3.1.

2.2 An alternative reconstruction

This paper proposes a more advanced reconstruction, referred to as weighted reconstruction,

sj+1 = Qj+1 (Pj s̃j + dj) + (Ij+1 −Qj+1)J̃
T
j s̃j . (6)

The elements of nj+1 × nj+1 matrix Qj+1 are taken to be between 0 and 1, thus making (6) a weighted

average between two reconstructions. The first reconstruction, Pj s̃j + dj , is the one used in (5). The

second one is a simple upsampling J̃T
j s̃j , i.e., starting from the vector s̃j , it inserts zeros at the locations

of the odds in sj+1. Starting from sj+1, and with s̃j = F̃jsj+1, we have perfect reconstruction by (6) if

Qj+1 + (Ij+1 −Qj+1)J̃
T
j F̃j = Ij+1.
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Taking Qj+1 = Ij+1 reduces (6) to (5), for which perfect reconstruction is guaranteed. In some sit-

uations, however, it is interesting not to recover the even components sj+1,e using (5), as it involves

a prediction and a detail coefficient. Instead, reconstruction is possible straight from s̃j , at least if

s̃j = sj+1,e, so the prefilter needs to be trivial, F̃j = J̃j . Although not strictly necessary, it is a natural

choice to take Qj+1 a diagonal matrix. Since there is only one way to reconstruct the odds in sj+1, the

submatrix Qj+1,o,o must be the (nj+1 − nj) × (nj+1 − nj) identity matrix. In particular we propose

to take Qj+1,k,k = q(xj+1,k;xj+1,o, hj), where q(x;xj+1,o, hj) is a continuous weight function, which

equals one in xj+1,ℓ if ℓ ∈ o(j + 1). On the other hand, we propose to set q(x;xj+1,o, hj) = 0 in points

x far from any knot in xj+1,o. More precisely, we suggest a zero weight if minℓ∈o(j+1) |x−xj+1,ℓ| > hj

and a smooth transition between zero and one for points closer to any of the xj+1,o than the bandwidth

hj .

The benefit from this weighted reconstruction lies in the values sj+1,e far from the refinement points

in xj+1,o. If these values are kept at coarse scale (F̃j = J̃j), then there is no need to keep detail coef-

ficients coding for the offset between the value and a smoothing prediction. The reconstruction (6) thus

allows us to keep the redundancy under control. The alternative reconstruction is particularly interesting

when the partitioning in e(j + 1) and o(j + 1) is far from dyadic, i.e., far from the alternating even-odd

split. Non-dyadic splits are useful in the decomposition on a highly heterogeneous set of covariates,

because the bandwidth hj may be too small in regions with few covariate values. The local polynomial

prediction in (4) is then possibly unbounded, leading to coefficients with uncontrolled variances. This

situation occurs when the covariates come from random, highly nonuniform, densities, which is the very

framework of this paper. Non-dyadic subdivision equipped with weighted reconstruction is a way to

control the variance propagation.

In an extreme approach, o(j + 1) is just a singleton, thus incorporating a lifting scheme with one

coefficient at-a-time [Nunes et al., 2006] into a Multiscale Local Polynomial Transform.

In a scheme with a general non-dyadic split, a proper construction of a local polynomial smoothing

with degree p̃ − 1 requires at least p̃ knots. Therefore we define the active set of knots, i.e., the set of

splittable or predictable knots by

Aj = {xj+1,k, k = 1, 2, . . . , nj+1, |xj+1,k − xj+1,k+2l+1| < hj for at least p̃j values of l}. (7)

In this definition, the parameter p̃j controls the smoothness of the reconstruction from the refinement

across the resolution levels. The value can be taken level dependent, in order to combine sharp recon-

structions at fine scales, using small values of p̃j , with smooth reconstructions at coarse scales, using

larger values of p̃j . Obviously, we need that p̃j ≥ p̃ at all levels.

The set of points o(j + 1) that are actually taken out at level j is then given by a recursion. If

xj+1,i = min(Aj), then i ∈ o(j + 1). Furthermore, if k − 1 6∈ o(j + 1) and xj+1,k ∈ Aj , then

k ∈ o(j + 1).
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3 Working in an MLPT basis

3.1 The construction of the basis

The Multiscale Local Polynomial Transform can also be described in terms of the basis functions ϕJ,k(x)

of the expansion (2). Indeed, taking j = J in (2), we can write the finest scale approximation as

fJ(x) = ΦJ(x)sJ , where ΦJ(x) is a row vector of basis functions ϕJ,k(x). The transform rewrites this

approximation as

fJ(x) = ΦL(x)sL +

J−1∑

j=L

Ψj(x)dj , (8)

where the rows of functions ΦL(x) and Ψj(x) can be found through an adjoint transform. Using the

reconstruction of (5), the adjoint transform is

Φj(x) = Φj+1(x)Pj , and, (9)

Ψj(x) = Φj+1(x)(Ij+1 −PjUj) = Φj+1(x)− Φj(x)Uj . (10)

This can be seen, step by step, by imposing the equality

Φj+1(x)sj+1 = Φj(x)sj +Ψj(x)dj , (11)

in which (5) is substituted. The weighted reconstruction in (6) leads to a generalised version of the two

scale equation (9),

Φj(x) = Φj+1(x)
[
Qj+1Pj + (Ij+1 −Qj+1)J̃

T
j

]
. (12)

Unless otherwise stated, further discussions work with the simple two scale equation (9), in order to keep

the expressions as simple as possible. All further conclusions apply to the weighted reconstruction if (9)

is replaced by (12).

Expression (8) is not a decomposition into a basis, because the collection of functions in ΦL(x) and

Ψj(x) is overcomplete. The collections ΦL(x) and Ψj(x) for each j separately are, however, linearly

independent.

Expression (10) is used in the design of the update matrix Uj . We impose that
∫∞
−∞Ψj(x)

T dx = 0j ,

so that any processing of the detail coefficients dj preserves the integral of the function. More precisely,

defining f̂J(x) = ΦL(x)sL +
∑J−1

j=LΨj(x)d̂j , for any values of d̂j , it holds that
∫∞
−∞ f̂J(x)dx =∫∞

−∞ fJ(x)dx,with fJ(x) defined in (8). Defining the momentsM q
j =

∫∞
−∞Φj(x)

Txqdx, the integration

of (9) becomes M q
j = PT

j M
q
j+1, while the integration of (10) leads to the following condition on Uj ,

M q
j+1 = UT

j M
q
j , (13)

which is imposed at least for q = 0, so that the zero integral condition (11) is satisfied. The matrix Uj is

taken to have a sparse band structure, close to that of J̃j , while satisfying (13) for q = 0, . . . , p−1, where
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p denotes the number of primal vanishing moments. As condition (13) may lead to uncontrolled variances

of sj , additional variance control conditions can be applied [Jansen, 2016], leading to a slightly higher

number of nonzero elements in J̃j . These variance control conditions have been developed for B-spline

wavelet transforms. In the framework of the overcomplete MLPT, the straightforward implementation of

these conditions turns out to lead to ill conditioned linear systems. Further research, beyond the scope of

this paper, is necessary to find fast and stable methods for variance control in MLPT.

Repeated refinement allows us to write all functions in terms of the initial basis ΦJ(x),

Φj(x) = ΦJ(x)PJ−1PJ−2 . . .Pj . (14)

The finest scale functions in ΦJ(x), are in principle free to choose. In the first instance we take ϕJ,k(x) =

χJ,k(x), with χJ,k(x) the characteristic (or identicator) function of the interval IJ,k. The intervals IJ,k

are chosen to form a partition of [0, 1] so that xJ,k ∈ IJ,k. Now, the scaling functions at scale j are

piecewise constant functions, determined by the partition at scale J . The dependence on the fine scale J

is made explicit in the notation Φ
[J ]
j (x).

3.2 Superresolution

The piecewise constant basis Φ
[J ]
j (x) can be replaced by an alternative basis of continuous functions

Φ
[J ]
j (x), defined by iterated local polynomial smoothing. More precisely, the iterations start off with

Φ
[j]
j (x), whose columns contain functions ϕ

[j]
j,k(x) satisfying ϕ

[j]
j,k(xj,l) = δk,l. Then, for i = j, j +

1, . . . , J − 1, we define

Φ
[i+1]
j (x) =

ni−1∑

l=0

Φ
[i]
j (xi,l)Pi,l(x;xi). (15)

It is straightforward to show that the alternative Φ
[J ]
j (x) satisfies the iterative refinement (14) for fixed

superscript [J ], and interpolates the piecewise constant basis Φ
[J ]
j (x) in all fine scale knots.

Proposition 1 The set of continuous, linearly independent functions Φ
[J ]
j , defined recursively by (15),

interpolates the set of piecewise constant, linearly independent functions Φ
[J ]
j (x), i.e., Φ

[J ]
j (xJ) =

Φ
[J ]
j (xJ) = PJ−1PJ−2 . . .Pj . In this expression, Φ

[J ]
j (xJ) stands for the nJ ×nj matrix with elements

ϕ
[J ]
j,k(xJ,l) on row k, column l, while Φ

[J ]
j (xJ) is of course the same matrix, now using the functions in

Φ
[J ]
j (x).

The approximative construction (15) can be refined beyond the resolution of the observations by inserting

knots without observations between the elements of xJ . This leads to the approximation Φ
[J∗]
j (x) at

superresolution J∗, where J∗ can be arbitrarily fine. Likewise, the actual scaling functions can be defined

through a refinement as in (14) up to the superresolution J∗.
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Superresolution refinement is also possible in the context of wavelet decompositions. It is a useful

numerical tool for finding the scaling functions when no closed form is available.

3.3 Finest scale coefficients

The approximation (15) has the interesting property to reproduce polynomials of degree p̃− 1 from their

function values in the knots.

Lemma 1 For any J∗ > j, and with x
q
j the vector of observations xqj,k from a power functions xq, we

find Φ
[J∗]
j (x)xq

j = xq.

By fixing Φ
[J∗]
j (x) through refinement up to superresolution, Lemma 1 leads to Φ

[J∗]
j (x)xq

j = xq +

O (∆J∗) , where ∆j = maxk=1,...,nj−1(xj,k − xj,k−1) and J∗ is an arbitrarily fine superresolution.

The reconstruction of polynomials from function values as in Lemma 1 is shared with interpolating

wavelet schemes, such as the Deslauriers-Dubuc lifting scheme [Deslauriers and Dubuc, 1989, Donoho

and Yu, 1999]. The downside of the Deslauriers-Dubuc refinement scheme is that on nonequispaced

settings, it may produce unbounded oscillations in the prediction Pj,l(x;xj) and hence in the basis

functions Φ
[J∗]
j (x). Nonequispaced wavelet decompositions with bounded scaling functions do exist, B-

splines [Jansen, 2016] being an important example. These scaling functions, however, have the problem

that they do not reproduce polynomials from function values.

A second property is the compact support of the basis functions.

Lemma 2 If at each level j, and for each knot xj+1,k, there are at least p̃ knots in xj within distance hj

from xj+1,k, then ϕj,k(x) has a support comprised in [xj,k − h∗j , xj,k + h∗j ], where h∗j =
∑J−1

i=j hi.

As a conclusion, the Multiscale Local Polynomial Transform combines three features: first, using

non-dyadic refinement and weighted reconstruction from the overcomplete decomposition, it is possible

to have bounded refinement in Pj and hence bounded scaling functions in Φ
[J∗]
j (x). Second, the support

of the basis functions is bounded. Third, the basis functions reproduce polynomials from their function

values in the knots. These three ingredients are needed for the following result.

Theorem 1 Let f(x) ∈ C p̃+α(aj , bj) with positive α, and (aj , bj) ⊂ Dom(f), the domain of f . Fur-

thermore, let Φj(x) be a scaling basis defined on the knots xj . Assuming that

(A1) Φj(x)x
q
j = xq for q = 0, 1, . . . , p̃− 1,

(A2) all functions in Φj(x) are bounded by |ϕj,k(x)| ≤M for some positive M independent from k,

(A3) all functions in Φj(x) have bounded support, meaning that ϕj,k(x1)ϕj,k(x2) 6= 0 implies |x1 −
x2| < 2h∗j ,

(A4) the number of knots within distance h∗j of x is bounded from above, independently from j,

10



then the approximation fj(x) = Φj(x)f(xj), where f(xj) is the vector of function values f(xj,k) in the

knots xj,k, has an approximation error uniformly bounded by |fj(x)− f(x)| ≤ Kh∗j
p̃.

Proof. See AppendixA. ✷

The result in Theorem 1 states that the approximation fj(x) of f(x) using its function values in the

knots achieves the same convergence rate as the approximation (2) with coefficients from a least squares

or other projection onto the basis. The approximation with function values thus combines a basis decom-

position with elements from a kernel approximation. As an example, the Nadaraya-Watson and Gasser-

Müller local estimators also take function values as coefficients, f̂local,j(x) =
∑nj−1

k=0 f(xj,k)Kj,k(x),

where Kj,k(x) = K
(
x−xj,k

h

)/∑nj−1
l=0 K

(
x−xj,l

h

)
, in the Nadaraya-Watson case, while for Gasser-

Müller,

Kj,k(x) =
1

h

∫ (xj,k+xj,k+1)/2

(xj,k−1+xj,k)/2
K

(
u− x

h

)
du.

In the framework of MLPT density estimation, the importance of Theorem 1 lies in the definition of the

finest scaling coefficient vector SJ as unbiased or nearly unbiased fine scale estimators of the density.

In other words, thanks to Theorem 1, it is possible to take as fine scale coefficients a vector of variables

SJ,k so that E(SJ,k) ≈ fX(xJ,k). Such a fine scale nearly unbiased estimator can be obtained by a sort

of adaptive, fine scale histogram, further developed in Section 4.3, Expression (19). The fine scale values

SJ act as a pilot estimator of fX(x), which is asymptotically unbiased but noisy. The subsequent MLPT

regression then finds a trade-off between bias and variance.

4 Multiscale Local Polynomial density estimation

4.1 The proposed density estimation procedure

Let Xn represent a vector of n i.i.d. observations from an unknown density fX(x), which may have one

or more, isolated, singular points at unknown locations. These singular points are points of discontinuity

or infinite values. This paper proposes the following procedure for the estimation of fX(x) from Xn.

1. Define the following covariates and responses in a nonparametric additive model as in Section 4.2:

(a) Let ∆Xn;i = X(n;i) −X(n;i−1) be the differences between the ordered values of Xn.

(b) Define the intermediate values

ξn;i =
[
X(n;i−1) +X(n;i)

]
/2,

which will be used as covariates.

(c) Define the fine scale response variables S
[0]
J,i = 1/∆Xn;i. As in Section 2.1, the subscript J

refers to the highest, i.e., finest scale in the subsequent multiscale analysis.

11



(d) Reduce the variance in the response variables S
[0]
J , at the price of a small scale bias by a

prefilter, defining SJ , as in (19).

Then, based on the result in Lemma 4, the observations SJ are modelled as approximately nor-

mally distributed variables with expected values θj , where θJ,i = fX(ξn;i).

2. Write the nonparametric model as a high-dimensional, sparse linear regression model θ = Xβ,

where the design matrix is the inverse MLPT matrix.

Using the forward transform matrix, the coefficients β are estimated by a soft-thresholding scheme,

from which the estimator of the density can be found by reconstruction, as in (18).

4.2 Density estimation as a generalised linear model

Let X(n;i), with i = 1, 2, . . . , n, be the order statistics of a random sample of size n from the distribution

with probability density function fX(x). Then, for the differences ∆Xn;i = X(n;i) − X(n;i−1), also

termed spacings [Pyke, 1965] in the literature, there exists a mean value ξn;i ∈ [X(n;i−1),X(n;i)], so that

fX(ξn;i)∆Xn;i = ∆Un;i, (16)

where ∆Un;i = U(n;i) − U(n;i−1) = FX(X(n;i)) − FX(X(n;i−1)) are uniform spacings, i.e., differences

between successive order statistics from a sample of a uniform random variable.

A straightforward calculation leads to the following well known result [Pyke, 1965]:

Lemma 3 For a given n, and for i = 2, 3, . . . , n, all values of ∆Un;i are identically distributed with

cumulative distribution F∆Un;i(u) = FU(n;1)
(u) = 1− (1− u)n.

From here, it follows immediately that (n+ 1)∆Un;i
d→ exp(1). Although the uniform spacings are not

independent, they are so up to a random normalisation. Indeed, we have the following result [Devroye,

1986, Chapter 5, Theorem 2.2].

Theorem 2 The joint distribution of the spacings ∆Un;i is given by the joint distribution of iid exponen-

tial random variables, normalised by their sum, i.e., by the joint distribution of the values Λi/
∑n

j=1Λj ,

where Λj ∼ exp(λ) for a common value of λ, while all Λj are independent.

This seems to justify the interpretation of ∆Un;i as a noise factor in (16). Nevertheless, since we would

like to use the form (16) as a basis for nonparametric regression, we propose the following result for

conditional convergence in distribution, thereby refining the marginal convergence result following from

Lemma 3.

Proposition 2 Let Dα be a subset of [0, 1]× [0, 1] so that (0, v) ∈ Dα for all v ∈ [0, 1]. Let α(t, v) be a

twice differentiable bivariate function defined on Dα, satisfying the following

12



(P1) For a given t, there exists a positive, Riemann integrable function A0(t), so that
∣∣∂α
∂v (t, v)

∣∣ ≤
A0(t).

(P2) limt→0 t
∂α
∂t (t, v) = 0.

Let U(n;i), with i = 1, 2, . . . , n, be the order statistics of a random sample of size n from a uniform

distribution on [0, 1]. Define ∆Un;i = U(n;i) − U(n;i−1) and consider the implicit definition Vn;i =

[1− α̂n;i]U(n;i−1) + α̂n;iUn;i, where α̂n;i = α(∆Un;i, Vn;i).

Then, with i/n → ρ for n → ∞, it follows that (n + 1)∆Un;i|Vn;i = v
d→ ∆v ∼ exp(1/µ(v)), where

µ(v) = 1/E(∆v) is given by 1
µ(v) = 1−ρ

1−v [1− α(0, v)] + ρ
v α(0, v). Moreover, the convergence of the

distribution function is uniform in v.

Remark 1 Whereas Vn;i is presented in Proposition 2 as an implicitly defined random variable, its

definition becomes explicit when α is given as a function of U(n;i−1) and U(n;i) instead of a function of

Vn;i and ∆Un;i. A situation where α is a constant holds as a special case.

Proof. See AppendixB. ✷

The result in Proposition 2 can be simplified a bit further. Indeed, it is well known that the empirical

quantile function of a sample from a uniform random variable converges with probability one uniformly

to the population quantile function QU (p) = p. As a result, if i/n → ρ, then P (U(n;i−1) → ρ) = 1 =

P (U(n;i) → ρ). By the sandwich theorem, P (Vn;i → ρ) = 1, and so, (n+1)∆Un;i|Vn;i d→ D ∼ exp(1)

almost surely.

The statement of Proposition 2 can be applied to Vn;i = FX(ξn;i), with ξn;i defined by (16), leading

to the following asymptotic nonparametric regression model.

Corollary 1 Let fX(x) be a continuously differentiable density function with ordered observations

X(n;i), i = 1, 2, . . . , n. Define the spacings ∆Xn;i = X(n;i) − X(n;i−1) and the middle values ξn;i
so that fX(ξn;i)∆Xn;i = FX(X(n;i))− FX(X(n;i)). Then, almost surely,

fX(ξn;i)(n+ 1)∆Xn;i|ξn;i
d→ D ∼ exp(1). (17)

Proof. See AppendixD. ✷

As the covariate values in ξn;i depend on the unknown density function through the definition in (16),

the subsequent analysis redefines the covariates as ξn;i =
[
X(n;i−1) +X(n;i)

]
/2, for which Proposition

2 still holds, meaning that (n + 1)∆Un;i|Vn;i = FX(ξn;i)
d→ D ∼ exp(1), almost surely. The nonpara-

metric regression model in (16) is replaced by fX(ξn;i)∆Xn;i = ∆Un;i − f ′

X
(ζn;i,0)+f ′

X
(ζn;i,1)

2 · [∆Xn;i]
2

4 ,

with ζn;i,0 ∈ [X(n;i−1), ξn;i] and ζn;i,1 ∈ [ξn;i,Xn;i]. Conditioned on ξn;i, the second term converges

almost surely to zero in probability.
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Taking the covariate values in the midpoints ξn;i of the observations and taking as responses the

spacings between the observations, the nonparametric regression model (17) stores the information from

the original sample in both covariates and responses. The duplication of the information allows us,

further on, to transform the response variables without losing information.

4.3 Estimation in a multiscale transform of exponential observations

The nonparametric regression model in (17) can be studied within the framework of a generalised linear

model (GLM), where we observe a sample Y from the density fYi
(y;θ,φ) = exp

[
−yθi−b(θi)

d(φi)

]
h(yi, φi).

The parameter vector θ is identified with the unknown density values, θi = fX(ξn;i). For the sake of sim-

plicity in subsequent expressions, we switch signs of θ in the classical definition of a exponential family

in the literature. In the light of Theorem 1 the density values can operate as finest scaling coefficients in

a MLPT decomposition. To this end, the parameter vector θ is further developed by sparse regression

θ = Xβ, where β are the coefficients of the MLPT decomposition. The design matrix, X, is identi-

fied as the reconstruction matrix from a MLPT, while the responses are given by the rescaled spacings,

Yi = (n+1)∆Xn;i. The expected responses are µi = E(Yi) = 1/θi. In our case, d(φi) = 1 = h(yi, φi),

so the dispersion parameter φ has no effect.

In order to impose sparsity, the estimation of β should include a variable selection. Variable selection

is typically achieved by a regularisation of the maximum likelihood estimator, adding a term that controls

a sparsity norm of the proposed solution. Using the ℓ1 norm to express sparsity, as in the literature on

the lasso [Chen and Donoho, 1995, Tibshirani, 1996, van de Geer, 2008, Wang et al., 2015] leads to the

following ℓ1 regularised maximum log-likelihood problem maxβ logL(θ;Y )− λ‖β‖1.
The working independence score with respect to β for a sample from the GLM with regression

θ = Xβ and with d(φi) = 1 = h(yi, φi), is given by ∇ logL(θ;Y ) = XT (Y − µ). The Karush-

Kuhn-Tucker (KKT) conditions for the ℓ1 regularised maximum log-likelihood problem are given by

XT
j (Y − µ) = λsign(βj) if βj 6= 0, and

∣∣∣XT
j (Y − µ)

∣∣∣ < λ if βj = 0, both for j = 1, 2, . . . ,m. Even

without the partitioning of the parameter vector into subsets of zeros and non-zeros, these expressions are

highly nonlinear, as µi = 1/θi while θ = Xβ, leading to iterative solvers with uncertain convergence.

In the specific context where the design X represents the reconstruction of a sparse data transforma-

tion, we wish to make use of the availability of a fast forward transformation X̃, in a soft-thresholding

scheme

θ̂ = Xβ̂ = X · ST(X̃SJ , λ). (18)

In this scheme, the finest scaling vector SJ is derived from the (asymptotically) exponential observations

Y in a way so that two conditions are fulfilled.

1. The finest scaling vector acts as a pilot estimator of the parameter vector θ. Hence, we impose that

at least asymptotically, E(SJ ) = θ.

2. The distribution of the MLPT transformed data should not show heavy tails, so that X̃(SJ − θ)
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does suffer from outliers.

In combination with the latter condition, the assumption of sparsity in the MLPT decomposition β = X̃θ

ensures that large values in X̃SJ can be attributed to the θ, thus motivating the use of a threshold.

As a choice for SJ we propose to take SJ,k = 1/Y k, where Y k is defined by adaptive local averaging,

Y k =
1

|∂k|
∑

l∈∂k
Yl, (19)

with ∂k the smallest set of the form {k, k − 1, k + 1, k − 2, k + 2, . . .} so that either |∂k| = r for a user

defined integer r or ξl − ξm > hJ,0 for at least one pair l,m ∈ ∂k and with hJ,0 a user defined minimum

working scale at the finest resolution level J . Although the local averaging induces a certain loss in the

response data, the duplication of the input into both grid ξ and response Y ensures that no information is

really lost. The local average operation is denoted by Y = Q̃Y , where the matrix Q̃ is viewed as being

parametrically dependent on the grid vector ξ. This way, the adaptive local averaging can be modelled

as a linear, and thus continuous operation on Y .

The process of local averaging is an extreme case of k-nearest estimator [Loftsgaarden and Queens-

berry, 1965] or it can be seen as a special case of variable kernel estimator [Breiman et al., 1977, Terrell

and Scott, 1992].

The asymptotic distribution of SJ follows from the subsequent analysis.

Lemma 4 Let Y be a vector of iid exponential random variables, with parameter θ, i.e., E(Yi) = 1/θ

and with cumulative sumsXk =
∑k

i=1 Yi. For a given positive value of h, defineNh = min{k|Xk > h}.

Then for Sh = Nh/XNh
, we have

E(Sh) = θ(hθ + 1) exp(hθ) [−Ei(−hθ)] , (20)

var(Sh) = θ2 exp(2hθ) [Ei(−hθ)]2 hθ + (21)

θ2
[
(hθ)2 + 3hθ + 1

]
·
{

1

hθ
− exp(hθ) [−Ei(−hθ)]− exp(2hθ) [Ei(−hθ)]2

}
.

These expressions use the notation for the exponential integral Ei(τ) = −
∫∞
−τ [exp(−t)/t] dt.Moreover,

for h → ∞ the variables Sh are asymptotically normally distributed, Sh ∼ AN(θ, θ/h). Finally, let

Sh,r = Sh if Nh ≤ r and Sh,r = (r − 1)/Xr otherwise, then

E(Sh,r) = θ

{
P (Nh ≥ r) + P (Nh ≤ r)

[
1 +

hθP (Nh ≤ r − 1)

P (Nh ≤ r)

]
exp(hθ) [−Ei(−hθ)]

}
. (22)

Moreover, for h→ ∞ and r → ∞ the variables Sh,r are asymptotically normally distributed.

Proof. See AppendixE. ✷
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4.4 Degrees of freedom

For the selection of an optimal threshold in (18), we adopt the Kullback-Leibler distance as the objective

function. More precisely, suppose that the data generating process is an independently exponentially

distributed random vector with parameter θ and let θ̃ be the value of that parameter in the model under

consideration. The Kullback-Leibler (KL) distance, defined as

KL(θ, θ̃) =
1

n

n∑

i=1

E [log fYi
(Yi; θi)]− E

[
log fYi

(Yi; θ̃i)
]
,

becomes

KL(θ, θ̃) =
1

n

n∑

i=1

[log(θi)− 1] +
1

n

n∑

i=1

[
θ̃iµi − log(θ̃i)

]
.

The first sum depends on the unobserved θ, but it has no effect, as it is a constant for all models θ̃. The

second term equals −ℓ(θ̃), with

ℓ(θ̃) =

n∑

i=1

[
log(θ̃i)−E(θ̃i)µi

]

the expected log-likelihood of the model under consideration, θ̃. The expectation is taken over the

unknown data generating process. In practice, the expected log-likelihood is estimated by its empirical

counterpart, evaluated in a sample dependent estimator, ℓ̂(θ̂) =
∑n

i=1

[
log(θ̂i)− θ̂iYi

]
. The bias of the

estimator is given by ν(θ̂) = E
[
ℓ̂(θ̂)− ℓ(θ̂)

]
= E

[
θ̂T (µ− Y )

]
. In the context of a linear regression

model, the quantity ν = E
[
µ̂T (Y − µ)

]
/σ2 is termed the number of (generalised) degrees of freedom,

for which various expressions have been developed under a variety of selection and estimation procedures

[Efron, 1986, Ye, 1998, Tibshirani and Taylor, 2012, Zou et al., 2007, Gao and Fang, 2011, Zhang et al.,

2012, Tibshirani, 2015, You et al., 2016, Vaiter et al., 2017]. In our case of soft-thresholding MLPT

applied to inverse exponential random variables, further development of this bias or degrees of freedom

is based on the following generalisation of Stein’s Lemma.

Lemma 5 Let fY (y) be a density defined on [a, b], where a and b may be infinite. Suppose that E(Y ) =

µ and var(Y ) = σ2 are finite. Define fY ′(y) = 1
σ2

∫ y
a fY (u)(µ − u)du, then fY ′(y) is a density and

E [(Y − µ)g(Y )] = σ2E [g′(Y ′)] , at least for any function g(u) defined on [a, b] for which a function

g′(y) exists, satisfying ∫ y

a
g′(u)du = g(y).

Proof. It is straightforward to verify that fY ′(y) is a density. The rest of the lemma follows from

integration by parts. ✷
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In the case where Y ∼ exp(θ), we find Y ′ ∼ Γ(θ, 2) and E [g′(Y ′)] = θE [g′(Y )Y ] . It then holds that

E [(Y − µ)g(Y )] = σ2θE [g′(Y )Y ] = E [g′(Y )Y ] /θ. In a bivariate case (X,Y ), a conditional version

of (5) reads E
[
(Y − µY |X)g(X,Y )

∣∣X
]
= σ2Y |XE

[
∂g(X,Y ′)

∂y

∣∣∣X
]
. For independent variables, it follows

that E [(Y − µY )g(X,Y )] = σ2YE
[
∂g(X,Y ′)

∂y

]
.

We now introduce the notation Y ′
i for the random vector that is equal to Y , except for the ith

component, which is Y ′
i . Then, for independent, exponential observations Yi, we have

ν(θ̂) = −
n∑

i=1

σ2Yi
E

[
∂θ̂i(Y

′
i )

∂Yi

]
= −

n∑

i=1

σ2Yi
θiE

[
Yi
∂θ̂i(Y )

∂Yi

]
= −

n∑

i=1

θ−1
i E

[
Yi
∂θ̂i(Y )

∂Yi

]
.

The subsequent development also introduces the diagonal matrices Θ and Υ with elements θj and Yi

on the diagonals. The expression above becomes ν(θ̂) = −E
{
Tr
[
Θ−1ΥJY (θ̂)

]}
, where JY (θ̂) is

the Jacobian matrix of θ̂ w.r.t. Y .

The Jacobian matrix is given by

JY (θ̂) = XDλX̃JY (SJ ) = −XDλX̃Υ
−2

Q̃,

leading to

ν(θ̂) = E
{
Tr
[
XDλX̃Υ

−2
Q̃ΥΘ−1

]}
= E

{
Tr
[
DλX̃Υ

−2
Q̃ΥΘ−1X

]}
.

The value of ν(θ̂) can be estimated by

ν̂(θ̂) = Tr
[
DλX̃Υ

−2
Q̃ΥΘ̂−1X

]
,

where the estimator Θ̂−1 can be taken to be a diagonal matrix with slightly shifted versions of the ob-

served values, i.e., θ̂−1
ii = Yi−1, so that the diagonal elements of Θ̂−1 and those of Υ are pairwise inde-

pendent. As for computational complexity, a fast evaluation of ν̂(θ̂) for a sequence of values of λ follows

from the expression ν̂(θ̂) =
∑

i∈Iλ Wii, with Iλ = {i|Dλ,ii = 1} and where W = X̃Υ
−2

Q̃ΥΘ̂−1X

is independent from λ.

5 Simulation study

The proposed MLPT density estimator is applied to the power law on [0, 1], fX(x) = K|x − x0|k, for

x ∈ [0, 1], and with K = (k+1)/[xk+1
0 + (1− x0)

k+1]. Throughout the simulations we set x0 = 0.345

and k = −1/2.

Figure 1 has a visual comparison of the MLPT approach with a straightforward kernel density esti-

mation and a kernel density estimation on probit transformed data. The simple kernel approach obviously
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Figure 1: Left panel, in grey line: the result of kernel density estimation. The true density function

in black line. Middle: density estimation using the proposed MLPT approach. Right panel: estima-

tion using a probit transformation of the observations, assuming knowledge of the exact position of the

singularity.

oversmooths near the singularity. Unlike the MLPT approach, the probit transform, Y = Φ−1(X − x0)

for X > x0 and Y = Φ−1(X − x0 + 1) for X < x0, relies on exact knowledge of the singularity.

Yet, the MLPT approach succeeds in locating the singularity and in reconstructing the density with less

fluctuations than the kernel estimator on the probit transformed data.

The sample size in Figure 1 has been n = 2000. The MLPT approach involves the choice of

quite some parameters. First, Definition (19) of the finest scaling coefficients from the observations

X contains the parameters r and hJ,0, the latter being the scale at which the coefficient is defined. In

the example of Figure 1, this scale is taken to be half the finest scale of the actual Multiscale Local

Polynomial Transform, i.e., hJ,0 = hJ/2. This choice is motivated by the idea that the fine scaling

coefficients should carry information concentrated within a fine resolution. Higher values of hJ,0 may

be recommended as well, since they promote normality of the fine scaling coefficients, albeit at the price

of some bias. Thanks to the duplication of information in the model setup, discussed in Sections 4.2

and 4.3, there is always at least a theoretical possibility to remedy this bias. The other parameter in the

definition of the finest scaling coefficients (19) is fixed throughout the simulations at r = 10. This value

prevents the distribution of SJ,k from showing heavy tails, as investigated in Lemma 4.

A second class of parameters comes with the actual MLPT. The number of dual vanishing moments

p̃ is set to two throughout the simulations, meaning that all results use Multiscale Local Linear Trans-

forms. The number of primal vanishing moments is set to two as well, meaning that all detail basis

functions have a zero integral and zero first moment, i.e.,
∫∞
−∞ ψj,k(x)xdx = 0. Obviously, the kernel

function used in the transform is another parameter to choose. This text has worked with the cosine

kernel, leaving further analysis on the impact of this choice to future research. An important issue is

the choice of the bandwidths hj at each level of the transform. The bandwidths act as user controlled

scales at the corresponding levels. On a regular grid of covariates with regular subdivision, the scale is

taken to be inversely proportional to the number of covariates in the grid at that resolution level, i.e.,

hj = O(1/nj). In particular, dyadic subdivision would call for dyadic bandwidths. For covariates at
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intermittent locations that can be modelled as ordered independent realisations from a uniform random

variable, the irregularity can be dealt with by taking the bandwidths at each level slightly larger, more

precisely hj = O(log(nJ)/nJ ) [Jansen and Amghar, 2017]. Observations from other than uniform den-

sities in a MLPT density estimation are too far from equidistant to be treated by a single bandwidth at

a time. Therefore, we return to dyadic bandwidths, but, as proposed in Section 2.2, only subsample in

regions where each prediction is based on a sufficient number of left over covariates within the distance

of the bandwidth. As in (7), let p̃j denote the level dependent minimum number of left over neighbours

imposed for a subsampling and a prediction to take place, then in Figure 1 we take p̃j = p̃ + 2 at all

levels. In a scheme with dyadic bandwidths, the bandwidth at the finest level, hJ , remains a parameter to

be finetuned. As this parameter plays a crucial role in the asymptotics of the method (see Theorem 1), its

assessment should depend, in an explicit or implicit way, on the sample size. The simulation of Figure

1 works with hJ = 0.6/n. The exact choice of hJ remains a topic of further investigation, especially

because the analysis is quite sensitive to the value of this parameter.

Third, the selection of coefficients in the Multiscale Local Polynomial decomposition may be steered

by a smoothing parameter for which Section 4.4 has proposed the optimisation of the information cri-

terion ℓ̂(θ̂) − ν̂(θ̂). In its simplest form, the selection takes the form of a threshold procedure on the

coefficients with normalised basis functions. As this operation does not guarantee positivity of the es-

timated density function, the procedure adopted in the simulation study adds to the selection another

set of coefficients that makes the estimator positive on the entire domain. More sophisticated selection

procedures include block thresholding and tree structured selection. The result in Figure 1 adopted level

dependent thresholds, for a more adaptive reconstruction.

The simulation of Figure 1 is repeated ns = 200 times for two samplesizes, n = 100 and n = 1000.

The results are summarised in Table 1. The table compares bias and variance for the MLPT approach

with both a simple kernel density estimation, using the same kernel function as in the MLPT ap-

proach, and the aforementioned probit transform. The root mean integrated squared biases (RMISB)

and variances (RMIV) in the table are defined by RMISB =

(∫ 1

0

[
Ef̂X(x)− fX(x)

]2
dx

)1/2

, and

RMIV =

(∫ 1

0
E
[
f̂X(x)− Ef̂X(x)

]2
dx

)1/2

, where the expected values can be estimated by the

mean over the simulation runs, as in Ef̂X(x) ≈ 1
ns

∑ns

s=1 f̂X,s(x). In this expression, f̂X,s(x) is the

estimate of simulation s, evaluated in x. The evaluation of f̂X,s(x) can be realised by including the point

of interest x, into the superresolution level of Proposition 1. The integrals can then be approximated

numerically on a fine grid x. The tabled values seem to suggest that, at least for sample size n = 1000,

the bias in a simple kernel approach is compensated by a much smaller variance than the competitors.

It should be kept in mind, however, that the integrated biases and variances report on the global quality,

whereas the visual comparison in Figure 1 draws the attention towards the local problems near the sin-

gularity. The probit transform and MLPT approaches perform relatively well near that singularity, yet

even their local variances near the singularity are much larger than that of the simple kernel approach.
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RMISB RMIV

n = 100 n = 1000 n = 100 n = 1000

Kernel 0.54890 0.54666 0.54118 0.16998

Probit+Kernel 0.164690 0.056735 2.16094 0.67754

MLPT 0.35631 0.10695 0.66695 0.43758

Table 1: Comparative study for classical kernel density estimations, probit transformed kernel estimation

and MLPT for power law with singularity, based on 200 simulation runs.

On the other hand, the variance of the MLPT estimator remains relatively large, also for n = 1000,

compared to that of the probit transform method. The reason is that, in contrast to the case of B-spline

wavelet transforms [Jansen, 2016], there is no variance control available in the current implementation

of the MLPT, as explained in Section 3.1.

The bias of the MLPT estimator decreases as the sample size increases. Although the MLPT does

not know the precise location of the singularity, its bias comes close to that of the probit transform kernel

estimator, which hinges on the precise location of the singularity.

6 Application to call center data

The MLPT density estimation method can be applied to the call center data used in Desmet et al. [2010].

This dataset contains the precise moments (in seconds) of 39553 phone calls during one month. The

objective is to estimate the distribution of the phone calls over the day, i.e., the density of the phone calls

on a domain of 24 hours, i.e., 86400 seconds. The performance is compared to the that of a simple kernel

density estimator with Sheather-Jones bandwidth, as in Desmet et al. [2010], given by hK = 950.4

(seconds, i.e., 0.264 hours).

The example illustrates how some of the MLPT parameters can be chosen as a function of the single

scale kernel bandwidth hK , whereas other parameters reflect the resolution of the observations. First,

the scale hJ,0 in the definition of the fine scaling coefficients SJ is set to hJ,0 = hK/16. This value

is large enough to model SJ as normally distributed data. The value is also much larger than the finest

scale hJ of the actual multiscale analysis. The latter is not based on the kernel bandwidth, but is set

to 10 seconds, thereby keeping track of the resolution of 1 second in the observations. The number

of resolution levels in the MLPT is chosen such that the coarsest scale hL is larger than the unique

bandwidth in the kernel approach hK . In this illustration we take dyadic bandwidths and hL+2 ≤ hK ≤
hL+1 = 2hL+2. This choice provides us with two levels beyond the kernel estimation bandwidth, leaving

us the flexibility to combine coarser and finer bandwidths at-a-time. Since the fine scale coefficients are

nearly homoscedastic normal random variables, the MLPT coefficients are approximately homoscedastic

within each resolution level. Level dependent thresholds for coefficients with homoscedastic normal

errors can be found using classical methods. The results in the analysis of Figures 2 and 3 were obtained

with minimum Generalised Cross Validation thresholds. The MLPT estimator clearly preserves more
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Figure 2: Left panel: MLPT threshold density estimator, further developed in Figure 3. Right panel:

single bandwidth kernel density estimator. The grey curve in both panels is the fine scale pilot estimator

SJ .

details and sharp transitions than the kernel density estimator.

7 Concluding discussions and outlook

For application in density estimation, this article has equipped the MLPT with a novel refinement scheme

for a multiscale analysis of highly non-equidistant samples. Thanks to degree of the local polynomial, the

adopted kernel function, the finest scale bandwidth and the number of primal vanishing moments in the

detail basis functions, the MLPT offers a great variety of analysis, basis functions and reconstructions,

in a way quite similar to the multitude of wavelet transforms and basis functions.

With the interpolating Deslauriers-Dubuc wavelet transforms, the MLPT shares the advantage that

function values are valid fine scaling coefficients. In the context of density estimation , this motivates

the use of a pilot or prototype estimator which is nearly unbiased. Its variance is allowed to be large,

although heavy tails should be avoided. The evaluation of the pilot estimator can then be used as fine

scaling coefficients SJ .

From there, the density estimation problem can be rewritten as a high-dimensional, sparse, gener-

alised linear model with exponential response, for which this article provides a MLPT analysis, including

a finetuning of the sparse variable selection and estimation using an information criterion based on a gen-

eralised notion of degrees of freedom.

Further research may focus on the choice of the MLPT parameters on the smoothness and numerical

properties of the transform. In particular, the control of variance propagation throughout the analysis,

especially near the boundaries of a finite interval, requires further attention.

The MLPT approach is mostly complementary to classical kernel density estimation for smooth den-
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Figure 3: Left panel: MLPT coefficients from the fine scaling coefficients SJ in Figure 2. Right panel:

Thresholded MLPT coefficients using minimum Generalised Cross Validation thresholds.

sity functions. This is because the MLPT of a smooth function shows no sparsity in the detail coefficients.

Indeed, the detaul coefficients of a smooth function are all (near-)zero, thus making any coefficient selec-

tion by thresholding pointless. Any MLPT based smooth density estimation should then operate on the

coarse approximation only, which is complementary to the approach proposed in this paper. As a result,

the performance of the method in this paper cannot be compared with kernel density estimation.

Instead, future analysis of the performance of a MLPT based kernel density estimation should first

consider coarse scale approaches for smooth densities, selecting the coarsest scale such that its perfor-

mance competes with the well known asymptotic results for kernel density estimation. The introduction

of fine scale detail analysis has to proceed without undoing the coarse scale performance of smooth den-

sities. On top of that, the fine scale details can be used to reconstruct singularities at unknown locations.

Asymptotic study of the preformance, which is beyond the scope of the current paper, is a topic of onging

and future research.
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Appendices

A Proof of Theorem 1

Let ∂j(x) ⊂ {0, 1, . . . , nj − 1} denote the x dependent set of indices for which |x − xj,k| ≤ h∗j . The

cardinality |∂j(x)| is bounded from above by (A4). Let C be the smallest integer, independent from j,

so that |∂j(x)| ≤ C . For the sake of (A1), it also holds that p̃ ≤ |∂j(x)|.
Then fj(x) =

∑
k∈∂j(x) f(xj,k)ϕj,k(x). As f(x) ∈ C p̃+α[a, b], there exists a polynomial px(u) of

degree p̃−1 so that |f(u)−px(u)| ≤ L|u−x|p̃. The polynomial px(u) satisfies px(x) = f(x), and being

of degree p̃−1, it can be decomposed as (A1), i.e., px(u) =
∑nj−1

k=0 px(xj,k)ϕj,k(u), from which we find

throught (A2,A3) that |fj(x) − f(x)| = |fj(x) − px(x)| ≤
∑

k∈∂j(x) |f(xj,k)− px(xj,k)| · |ϕj,k(x)| ≤
C · h∗j p̃ ·M.

B Proof of Proposition 2

The joint density function of U(n;i−1) and U(n;i) is given by fU(n;i−1,i)
(u1, u2) = (i − 1)i

(n
i

)
ui−2
1 (1 −

u2)
n−i. The Jacobian of the transformation U1 = V − α∆ and U2 = V + (1 − α)∆ is given by

J = 1− ∂α
∂v (∆, V )∆, so we find, on a region defined by α(t, v)t ≤ v ≤ 1− [1− α(t, v)]t,

f∆Un;i,Vn;i(t, v) = (i− 1)i

(
n

i

)
(v − α(t, v)t)i−2(1− v − [1− α(t, v)]t)n−i

(
1− ∂α

∂v
(t, v)t

)
.

From this, we find F∆Un;i|Vn;i
(t|v) =

∫ t
0 exp [L∆Vn(r, v)] dr

/∫m(v,t)
0 exp [L∆Vn(r, v)] dr ,wherem(v, t) =

min (v/α(t, v), (1 − v)/(1 − α(t, v))) and

L∆Vn(t, v) = log

[
(v − αt)i−2(1− v − (1− α)t)n−i

(
1− ∂α

∂v
t

)]

= (i− 2) log(v − αt) + (n− i) log(1− v − (1− α)t) + log

(
1− ∂α

∂v
t

)

The asymptotic distribution of (n + 1)∆Un;i|Vn;i is given by F∞(t|v) = limn→∞ F∆Un;i|Vn;i
(t/(n +

1)|v). When n and i grow large, the first two terms of L∆Vn(t, v) tend to dominate, with an increas-

ingly sharp peak at the origin, followed by a decay. We further assume that n is large enough so that
∂L∆Vn

∂t (0, v) is negative. In the spirit of Laplace’s method for the approximation of integrals, we write

26



In(t, v) =
∫ t
0 exp [L∆Vn(r, v)] dr ≈ Ĩn(t, v), where

Ĩn(t, v) =

∫ t

0
exp

[
L∆Vn(0, v) +

∂L∆Vn

∂t
(0, v) · r

]
dr

= exp [L∆Vn(0, v)]

∫ t

0
exp

[
∂L∆Vn

∂t
(0, v) · r

]
dr

= exp [L∆Vn(0, v)]

∣∣∣∣
∂L∆Vn

∂r
(0, v)

∣∣∣∣
−1{

1− exp

[
∂L∆Vn

∂t
(0, v) · t

]}
.

More precisely, using Assumption (P1) in Proposition 2, Appendix C shows that In(t, v)/Ĩn(t, v) → 1,

uniformly in v and t. As a result, the asymptotic distribution can be expressed as

F∞(t|v) = lim
n→∞

1− exp

[
∂L∆Vn

∂t
(0, v) · t/(n+ 1)

]

1− exp

[
∂L∆Vn

∂t
(0, v) ·m(v, t)

] , (23)

provided that the limit on the right hand side exists. The convergence holds uniformly for v. We have

∂L∆Vn

∂t
(t, v) =

i− 2

v − αt

(
−α− t · ∂α

∂t

)
+

n− i

1− v − (1− α)t

(
−(1− α) + t · ∂α

∂t

)

+

(
1− ∂α

∂v
t

)−1(
−∂α
∂v

− t · ∂
2α

∂t∂v

)
.

Defining the function gt(v) = t∂α∂t (t, v), Assumption (P2) states that g0(v) = 0 and from there we also

have limt→0 t
∂2α
∂t∂v (t, v) = g′0(v) = 0. From Assumption (P1), it follows that limt→0 t

∂α
∂v (t, v) = 0. All

together, this leads to

∂L∆Vn

∂t
(0, v) = − i− 2

v
α(0, v) − n− i

1− v
[1− α(0, v)] − ∂α

∂v
(0, v).

As a result, for any M > 0, there exists an integer n∗, so that for all n = n∗, n∗+1, . . . and for all values

of v and t, it holds that
∂L∆Vn

∂t (0, v)m(v, t) < −M . The denominator in (23) tends to limn→∞ 1 −
exp

[
∂L∆Vn

∂t (0, v) ·m(v, t)
]
= 1− 0 = 1. For the numerator, we find

lim
n→∞

exp

[
∂L∆Vn

∂t
(0, v) · t

n+ 1

]

= exp

[
−t lim

n→∞

(
i− 2

v
· α(0, v)
n+ 1

+
n− i

1− v
· 1− α(0, v)

n+ 1
+
∂α

∂v
(0, v)

1

n + 1

)]

= exp

[
−t
(
ρ

v
α(0, v) +

1− ρ

1− v
[1− α(0, v)]

)]
,
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and so, F∞(t|v) = 1 − exp(−t/µ(v)). with µ(v) as in the statement of Proposition 2. This limit

holds uniformly in v and t. Indeed, we have the inequality |exp(−γn/u)− exp(−γ/u)| ≤ |γ/γn − 1|
where we can substitute γn = t(i − 2)α(0, v)/(n + 2), γ = tρα(0, v) and u = v to find that

exp
[
−t
(
i−2
v · α(0,v)

n+1

)]
converges uniformly to exp

[
−t
(ρ
vα(0, v)

)]
. The other terms in the exponen-

tial function follow a similar analysis, resulting in a product sequence of three uniformly convergent and

bounded sequences.

C A variant of Laplace’s method for the approximation of an integral

The uniform convergence of the ratio In(v, s)/Ĩn(v, s) → 1, defined and used in the proof of Proposition

2, follows from the identification gn(t, s) = L∆Vn(t, s) in the lemma below. The function L∆Vn(t, s)

can be verified to satisfy all the stated assumptions.

Lemma 6 Let gn(x, y) be a sequence of functions defined on [0, 1]× [0, 1], so that limn→∞ 1
ngn(x, y) =

g(x, y) exists. Assume that the sequence has the following properties.

(A1) The gn(x, y) are uniformly bounded from above.

(A2) For any convergent sequence an, the functions
∫ an
0 exp [gn(x, y)/n] dx converge uniformly to∫ an

0 exp [g(x, y)] dx.

(A3) The functions gn(x, y) are continuously differentiable, with
∂gn
∂x (x, y) < 0. Moreover, there exists

a positive constant κ, so that
∂gn
∂x (0, y) < −κ for any y,

(A4)
∂gn
∂x (0, y) = −∞ only when gn(0, y) = −∞,

(A5) For fixed x, the sequence 1
n
∂gn
∂x (x, y) converges to the function

∂g
∂x(x, y), that is continuous w.r.t. y.

The convergence is uniform on every compact subset of Ax =
{
y ∈ [0, 1], ∂g

∂x(x, y) is finite
}
.

Then, with In(y) =
∫ an
0 egn(x,y)dx, and Ĩn(y) =

exp [gn(0, y)]
|∂gn∂x

(0,y)|
[
1− exp

(
−an

∣∣∣∂gn∂x (0, y)
∣∣∣
)]
, we have

a uniform convergence In(y)/Ĩn(y) → 1 for y ∈ [0, 1] and n→ ∞.

Proof. Define AM ′(ρ) = lim infn→∞
{
y ∈ [0, 1], supx∈[0,ρ)

1
n

∣∣∣∂gn∂x (x, y)
∣∣∣ < M ′

}
, for arbitrary M ′ >

0. The set AM ′(ρ) is not empty, as it covers the set{
y ∈ [0, 1], supx∈[0,ρ)

∣∣∣ ∂g∂x(x, y)
∣∣∣ < M ′ − ǫ

}
for any ǫ > 0. Then, for arbitrary ε > 0, there exists

a δ > 0, so that for any ξ ∈ [0, δ), for any y ∈ AM ′(δ), and for n sufficiently large, we have
1
n

∣∣∣∂gn∂x (ξ, y)− ∂gn
∂x (0, y)

∣∣∣ ≤
∣∣∣ 1n

∂gn
∂x (ξ, y) − ∂g

∂x(ξ, y)
∣∣∣+
∣∣∣ ∂g∂x(ξ, y)−

∂g
∂x(0, y)

∣∣∣+
∣∣∣ ∂g∂x(0, y) −

∂gn
∂x (0, y)

∣∣∣ <
ε. On the other hand, for x ∈ [0, δ), we have gn(x, y)− gn(0, y) = ∂gn

∂x (ξ, y)x, where ξ ∈ [0, x] depends

on x and y. As a result, for any ε > 0, there exists a set AM ′(δ)× [0, δ) in which, for n sufficiently large,

gn(0, y)+
(
∂gn
∂x (0, y) − nε

)
x ≤ gn(x, y) ≤ gn(0, y)+

(
∂gn
∂x (0, y) + nε

)
x. Defining δn = min(δ, an),
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and for y ∈ AM ′(δ), this leads to the upper bound

∫ an

0
egn(x,y)dx =

∫ δn

0
egn(x,y)dx+

∫ an

δn

egn(x,y)dx

≤
∫ δn

0
egn(0,y) · exp

[(
1

n

∂gn
∂x

(0, y) + ε

)
nx

]
dx+

∫ an

δn

egn(x,y)dx

=
egn(0,y)∣∣∣∂gn∂x (0, y)

∣∣∣ − nε

{
1− exp

[
−δnn

(
1

n

∣∣∣∣
∂gn
∂x

(0, y)

∣∣∣∣ − ε

)]}

+

∫ an

δn

egn(x,y)dx (24)

For x > δ, we have gn(x, y) ≤ gn(δ, y) ≤ gn(0, y) − (κ + nε)δ. The last term in (24) is then further

bounded by

∫ an

δn

egn(x,y)dx =

∫ an

δn

egn(x,y)/negn(x,y)(n−1)/ndx

≤
∫ an

δn

egn(x,y)/n exp [(n− 1)gn(0, y)/n − (n− 1)/n(κ + nε)δ] dx

∼
exp [(n− 1)gn(0, y)/n]

∫ an

δn

eg(x,y)dx

exp [(n− 1)κδ/n] exp [(n− 1)εδ]
,

where the asymptotic equivalence holds uniformly in y.

From here, we find
∫ an
δn
egn(x,y)dx/Ĩn(y) → 0, uniformly for any choice of ε. Let In,1(y) =

egn(0,y)

|∂gn∂x
(0,y)|−nε

{
1− exp

[
−δnn

(∣∣∣ 1n
∂gn
∂x (0, y)

∣∣∣ + ε
)]}

be the first term in (24), then

In,1(y)

Ĩn(y)
=

1
n

∣∣∣∂gn∂x (0, y)
∣∣∣

{
1
n

∣∣∣∂gn∂x (0, y)
∣∣∣ − ε

}

{
1− exp

[
−δnn

(∣∣∣ 1n
∂gn
∂x (0, y)

∣∣∣ + ε
)]}

{
1− exp

[
−ann

∣∣∣ 1n
∂gn
∂x (0, y)

∣∣∣
]} ,

which converges uniformly to
| ∂g∂x

(0,y)|
| ∂g∂x (0,y)|+ε

. In a similar, though slightly simpler way, a lower bound with

arbitrary ε is obtained ∣∣∣ ∂g∂x(0, y)
∣∣∣

∣∣∣ ∂g∂x(0, y)
∣∣∣ − ε

≤ lim
n→∞

In(y)

Ĩn(y)
.

The proof is completed by letting M ′ → ∞. ✷
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D Proof of Corollary 1

Define the function α(t, v) = (v − u0)/t with u0 solving the equation t = fX(F−1
X (v))[F−1

X (u0 + t)−
F−1
X (u0)]. This is, let x0 the value for which u0 = FX(x0) and x1 the value for which u0+ t = FX(x1),

then x0 and x1 satisfy FX(x1)− FX(x0) = fX(ξ)[x1 − x0], and FX(ξ) = v = u0 + α(t, v)t.

Using de l’Hôpital’s rule we findα(0, v) = limt→0(v−u0)/t = − limt→0
∂u0
∂t .As ∂α

∂t = (1/t)
[
−∂u0

∂t − α(t, v)
]
,

it follows straightforwardly that limt→0 t
∂α
∂t (t, v) = 0, which is Asssumption (P2) in Proposition 2. As

for Asssumption (P1), we have that

∂α

∂v
(t, v) =

1

t

{
1− f ′X(ξ)

[
fX(ξ)

]3
fX(x1)fX(x0)

fX(x1)− fX(x0)
t

}
.

There are several ways to obtain this result. For instance, by defintion, we have

∂α

∂v
=

1− ∂u0
∂v

t
,

in which we substitute ∂u0
∂v using the expression

∂u0

∂ξ
=
dv

dξ

∂u0
∂v

= fX(ξ)
∂u0
∂v

.

With t = u1 − u0 = (x1 − x0)fX(ξ) a constant throughout these calculations, we have

∂(x1 − x0)

∂ξ
=

−t
[
fX(ξ)

]2 f
′
X(ξ),

but also
∂(x1 − x0)

∂ξ
=
∂u1

∂ξ

dx1
du1

− ∂u0

∂ξ

dx0
du0

=
∂u0

∂ξ

(
1

fX(x1)
− 1

fX(x0)

)
.

Putting together these expressions leads to the aforementioned result, which can be further developed

into

∂α

∂v
(t, v) =

1

t

{
1− f ′X(ξ)fX(x1)fX(x0)[

fX(ξ)
]2
f ′X(ζ)

}
,

with ζ ∈ (x0, x1).

Define Dα = {(t, v) ∈ [0, 1] × [0, 1] s.t.ξ exists}, then it is straightforward that (0, v) ∈ Dα for any

v ∈ [0, 1]. With r an arbitrary positive real number and

Dr = {(t, v) ∈ Dα;max(|f ′(ξ)|, 1/|f ′(ξ)|, |f(ξ)|, 1/|f(ξ)|) < r},
the corollary follows from letting r → ∞.
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E Proof of Lemma 4

Given the memorylessness of the exponential distribution, the Poisson count Nh−1 is independent from

the exponentially distributed value in Uh = XNh
− h. As a result

E(Sh) = E

(
Nh

XNh

)
= E(Nh) · E

(
1

h+ Uh

)
= (hθ + 1)

∫ ∞

0

1

h+ u
θ exp(−uθ)du,

leading to (20). The expression (21) follows in a similar way, using the fact that for independent vari-

ables X and Y , it holds that var(XY ) = [E(X)]2 var(Y ) + [E(Y )]2 var(X) + var(X)var(Y ). For the

asymptotic analysis, we have

σNh

Nh − E(Nh)

XNh

=
[Nh −E(Nh)]/σNh

XNh
/E(XNh

)
· var(Nh)

E(XNh
)

d→ Zθ ∼ N(0, θ2).

Indeed, in the first factor, the numerator converges in distribution to a normal random variable, while the

denominator converges in distribution to a constant. The second factor is (hθ)/(h+ 1/θ) → θ. We thus

find that
σNh

θ

Nh −E(Nh)

XNh

=
Sh − θ√
θ/h

+
θ − E(Nh)/XNh√

θ/h

d→ Z ∼ N(0, 1). (25)

Using the identityE(Nh) = θE(XNh
), the second term becomes

θ−E(Nh)/XNh√
θ/h

=
√
hθ (1−E(XNh

)/XNh
) .

With η = ε/
√
hθ, and applying the inequality

P (|1− 1/X| > η/(1 − η)) ≤ P (|1−X| > η) , followed by Chebyshev’s inequality, we find for the

second term in (25) that

P

(∣∣∣∣
√
hθ

(
1− E(XNh

)

XNh

)∣∣∣∣ > ε

)
≤ P

(∣∣∣∣
XNh

E(XNh
)
− 1

∣∣∣∣ >
ε/
√
hθ

ε/
√
hθ + 1

)

≤ var(XNh
/E(XNh

))
[

ε/
√
hθ

ε/
√
hθ+1

]2

=
hθ

ε2
1/θ2

(h+ 1/θ2)2

(
ε√
hθ

+ 1

)2

→ 0

as h→ ∞. From this it follows that the first term in (25) is asymptotically standard normal.

For (22), we have

E(Sh,r) = E(Sh,r|Nh > r)P (Nh > r) + E(Sh,r|Nh ≤ r)P (Nh ≤ r)

= E

(
r − 1

Xr

∣∣∣∣Nh > r

)
P (Nh > r) + E

(
1

h+ Uh

)
· E(Nh|Nh ≤ r)P (Nh ≤ r),

using the fact that the density of the exponential excess value Uh does not change by the information
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that Nh ≤ r. Given that Nh − 1 is a Poisson count, it holds that E(Nh|Nh ≤ r)P (Nh ≤ r) =∑r
k=1 kP (Nh = k) = P (Nh ≤ r) + hθP (Nh ≤ r− 1). Furthermore, we have that Xr|Nh > r has the

distribution of a truncated gamma, Tθ,r|Tθ,r ≤ h, where Tθ,r ∼ Γ(θ, r), from which it follows that

E

(
r − 1

Xr

∣∣∣∣Nh > r

)
P (Nh > r) = E

(
r − 1

Tθ,r

∣∣∣∣Tθ,r ≤ h

)
P (Tθ,r ≤ h)

= θP (Tθ,r−1 ≤ h) = θP (Nh > r − 1) = θP (Nh ≥ r).

Assembling the expressions concludes the proof of (22). ✷
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