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Abstract

Parameter selection in high-dimensional models is typically finetuned in a way that keeps
the (relative) number of false positives under control. This is because otherwise the few
true positives may be dominated by the many possible false positives. This happens, for
instance, when the selection follows from a naive optimisation of an information criterion,
such as AIC or Mallows’s Cp. It can be argued that the overestimation of the selection
comes from the optimisation process itself changing the statistics of the selected variables,
in a way that the information criterion no longer reflects the true divergence between the
selection and the data generating process. In lasso, the overestimation can also be linked to
the shrinkage estimator, which makes the selection too tolerant of false positive selections.
For these reasons, this paper works on refined information criteria, carefully balancing false
positives and false negatives, for use with estimators without shrinkage. In particular, the
paper develops corrected Mallows’s Cp criteria for structured selection in trees and graphical
models.
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1 Introduction

Whereas statistical inference takes place after the estimation of the parameters in a model,
model and parameter selection is a step that in principle precedes and in some cases includes
the estimation of the parameters. Statistical inference operates in an asymmetric way w.r.t. the
null and alternative hypotheses, thereby reflecting the presumption of innocence. In parame-
ter selection, the decisions whether or not to include parameters in the model are based on
symmetric criteria, which can be compared to profiling in a criminal investigation.

In all three steps, parameter selection, estimation and inference, the notion of likelihood
may be adopted, although each time in a different role. In inference, the likelihood ratio can
be used to test the significance of a larger model against a smaller. An estimation procedure
assumes that the model being worked in is correct, or at least it has been selected as the
least false model to work in for the statistical inference problem at hand. In this framework,
maximising the likelihood function amounts to finding the parameters that make the data fit as
well as possible into the proposed model. In a parameter selection, candidate models can be
assessed through the capability of modelling or predicting the same sort of data as those that
have been observed. Working with maximal likelihood would promote large models, because
they would best fit the current observations, including the noise. The best model for predicting
these observations, without noise that is, would minimise the expected value of the maximum
likelihood with respect to the data generating process (DGP, also referred to as ground truth).
The expected likelihood is closely related to the Kullback-Leibler (KL) divergence between the
proposed model and the DGP. Other, similar divergences between the proposed model and
the DGP include the prediction error (PE). PE is basically the KL divergence in a model with
additive normal noise, assuming the variance to be known (or easy to estimate outside the
parameter selection).

The divergence (i.e., the expected likelihood) depends on the bias and the variance of an es-
timator in the proposed model. The balance between bias and variance is typically equivalent,
at least in expected value, to a closeness-complexity trade-off, formalised in an information
criterion. Closeness is typically expressed by the sample likelihood in the model under con-
sideration, while the complexity acts as a penalty compensating for the gap between sample
likelihood and the expected likelihood. Akaike’s Information Criterion (AIC) [Akaike, 1973] and
Mallows’s C,, [Mallows, 1973] are prototypes of these information criteria, estimating, respec-
tively, the KL distance and the PE. Other well known criteria include the Bayesian or Schwarz
information criterion (BIC) [Schwarz, 1978], Akaike’s Final Prediction Error (FPE) [Niedzwiecki
and Ciotek, 2017], Exponentially Embedded Families [Kay, 2005], Minimum Description Length
(MDL) [Rissanen].

In the last few decades, the interaction between parameter selection and statistical inference
has become a major point of attention in statistical research. In one direction, the focus for



which the model is used determines which model performs best [Claeskens and Hjort, 2003].
In the other direction, the parameter selection procedure creates additional uncertainty in the
estimators, leading to wider confidence intervals [Berk et al., 2013, van de Geer et al., 2014,
Zhang and Zhang, 2014, Lee et al., 2016, Charkhi and Claeskens, 2018].

This paper concentrates on the uncertainty arising from the selection of variables, however
not on its effect on the subsequent inference. Instead, it deals with its effect on the statistics
of the information criterion used in the process of parameter selection. Indeed, the classical
information criteria have been developed for estimating the divergence of a given, fixed model
from the DGP. However, if the model under consideration comes from optimising a criterion, that
optimisation has interacted with the noise. This interaction affects the statistics of the noise. As
a result, the information criterion may not be a good estimator of the divergence after all, and
hence, the optimiser of the criterion may point to a suboptimal model in terms of divergence
w.r.t. the DGP. The gap between the information criterion and the divergence or error measure
can be explained and formalised by the concept of generalised degrees of freedom [Ye, 1998,
Hansen and Sokol, 2014, Jansen, 2014].

This paper studies the generalised degrees of freedom in the case of structured parameter
selection in trees and graphs. It starts off with a lasso procedure, i.e., a selection and estimation
by solving an ¢; regularised least squares problem [Tibshirani, 1996, Chen et al., 1998]. It
has been reported [Wainwright, 2009, Tropp, 2006, Zhao and Yu, 2006] that lasso is selection
consistent, at least if the DGP is described by a model belonging to the set of models under
consideration. Moreover, the parameters in that model are assumed to be sufficiently large,
while at the same time the regularisation parameter A should not be too large, so that for
n — oo the numbers of false positives and false negatives tend to zero. As these assumptions
put quite some restrictions on ), it is generally impossible to combine minimum prediction
errors and selection consistency [Meinshausen and Blihimann, 2006], which motivates the use
of adaptive lasso [Zou, 2006]. In particular, a minimum prediction error choice of X\ leaves
many false positives resulting in noisy features. This effect can be explained by the lasso
shrinkage in two ways. First, the shrinkage reduces the price of false positives in terms of
induced variance. As a result, the optimisation of the bias-variance balance is tolerant of their
presence in the selection. Second, the shrinkage is responsible for an important bias in the
lasso estimator. In order to keep that shrinkage bias under control, the minimum prediction
error tends to be achieved for small values of the regularisation A, which corresponds to large
models. Debiasing [Javanmard and Montanari, 2018] or regularisation [Li and Shao, 2015]
of the lasso solution leads to minimum prediction error selections with less false positives.
Alternative regularisations have also been proposed, reducing the shrinkage in large significant
parameters. They include the smoothly clipped absolute deviation (SCAD) [Fan and Li, 2001]
and a minimax concave penalty (MCP) [Zhang, 2010]. More recent tree structured sparse
estimation has been proposed to be based on deep neural networks [Kim and Chung, 2020].



This paper follows a debiasing approach. It adopts the lasso algorithm, minimising an ¢;
regularised sum of squared residuals, for selection purposes only, not for estimation. The built
in biased, shrinkage estimation is replaced by a least squares projection onto the selected
model. The use of lasso for selection purposes is motivated by the fact that for a given value
of A, the convex optimisation of lasso leads to nearly the same sparsity level as a combina-
torially complex /¢y regularisation, leading to the best x term orthogonal projection [Donoho,
2006]. Undoing the shrinkage after selection has an impact on the bias-variance balance in the
KL divergence or in the prediction error, but also on the closeness-complexity balance in the
estimation of the error by an information criterion. Indeed, the shrinkage bias occurs mainly at
large values of A, while the variance from the false positives is mainly seen with small values
of A. Undoing the shrinkage takes away the shrinkage bias and increases the impact of false
positives on the variance, thus shifting the optimal bias-variance balance towards larger values
of A\, meaning smaller models with less variance. Without shrinkage, finding the optimal model
size is a more delicate task, because the impact of false positive selections on the variance is
no longer tempered by shrinkage. Therefore, a given overestimation of the optimal model size
introduces more variance. On the other hand, taking the model too small introduces more bias
when there is no shrinkage, because the optimum lies at smaller models, where false negatives
occur more frequently.

As for the closeness-complexity balance in the information criterion, a quite remarkable
result states that for a linear regression model with normal noise, the number of degrees of
freedom of the lasso equals the size of the selected model [Zou et al., 2007, Tibshirani and
Taylor, 2012]. It also equals the number of degrees of freedom in a least squares estimation
on a fixed model. In other words, with normal errors, the shrinkage bias compensates exactly
for the influence of the errors on the optimisation process. This explains why Mallows’s C,, for
orthogonal projection on a given model has the same form as Stein’s Unbiased Risk estimator
in soft thresholding [Stein, 1981]. After undoing the shrinkage, the estimation of A with minimum
prediction error or KL divergence requires a tailored information criterion. This is developed in
Section 2.

The remainder of the article is organised as follows. Section 2 develops the idea to finetune
a shrinkage based sparse selection method (such as lasso) for minimum prediction error when
using the selection for orthogonal projection without shrinkage. Section 3 applies the method-
ology to subtree selection, in particular to regression trees, Section 4 applies the methodology
to graphical models representing large multivariate normal random variables.



2 Information criteria for use in parameter selection without shrink-
age

Consider the full linear regression model
Y=p+oZ=XB+o0Z, (1)

where X is standardised i.i.d. noise, 3 is a sparse m dimensional vector, and Y is a response
vector with sample size n. The statement (1) assumes that the DGP is a submodel of the
full model. Alternatively, the model in (1) can be considered as a family of approximations to
the DGP, from which the member closest to the DGP is defined the least false model. In this
definition, the distance between the DGP and the least false model is measured, for instance,
by the Kullback-Leibler divergence.

Since in the high-dimensional case m may be larger than n, or otherwise, the design matrix
may be fully or nearly singular due to collinearity, an estimator of 3 is searched for in a two
steps regularisation procedure. The first step computes a pilot estimator BA, using a relatively
fast selection and estimation procedure. The prototype of a pilot procedure is the lasso, where
the estimator is defined by solving the ¢; regularised least squares problem

min [Y — XS + Al (2)

where [ 8] = 37, |35]. Solving the ¢, regularised least squares problem leads to sample de-
pendent size k). As an alternative, regularisation can be achieved by fixing the cardinality of the
selection, say x, and from there find the /A\H that leads to the best selection S, with cardinality
k. The subsequent discussion will therefore consider all quantities as function of x or indexed
by « instead of A. Finetuning by « instead of X is particularly interesting in selection proce-
dures, other than lasso, that do not rely on an explicit regularisation parameter. An example is
developed in Section 3.

The final estimator is then found as B8, = XY, where Xg is referred to as the analysis
matrix, influence matrix or hat matrix, associated with the selection S (for the sake of simplicity
in the notations, the subscript « is omitted in expressions holding for any selection S). A typical
choice of the hat matrix Xg, for a selection S is given by the least squares solution Xg =
(XEXs)~tXT where Xg is the submatrix of X containing all columns j € S.

Assumption 2.1 (Projection) It is assumed in this article that Ps = XsXg is a projection, i.e.,
an idempotent matrix. The projection is not necessarily an orthogonal projection, i.e., Pg is not
necessarily symmetric.

The procedure includes a finetuning of the regularisation parameter «, for which the objec-



tive is to minimise the PE of the outcome,

PE(B,) = - B|XS - XA.3

The PE is estimated unbiasedly by the non-studentised version of Mallows’s C,,

2, o

A(B) = ~88p(Br) + ko — o2, ©

where SSE(ﬁK) = |ex|3, withe, =Y — fi, =Y — XB,.i the residual vector, and where v, are
the generalised degrees of freedom [Ye, 1998], defined and developed by

Vg = %E [eT(e —ex)] =

o o2

1 ~ 1 ~
—FE [ET(Y —p-Y 4+ [,)] = ;E [ET/J,H]
If the nuisance parameter o is not available or hard to estimate independently from the pa-
rameter selection process, then minimisation of (3) can be replaced with a generalised cross
validation [Jansen, 2015]

1 ~

~ SSe(B)
GCV(By) = — . (4)
(-%)
n

If the final estimator were taken to be just the pilot estimator (including the lasso shrinkage, that
is), ﬁﬁ = BH, then the degrees of freedom would be simply v,, = x, [Zou et al., 2007, Tibshirani
and Taylor, 2012]. While the pilot estimator suffers from the above mentioned tolerance of false
positives, the minimum GCV shrinkage estimator En* can be used to define an estimator of the
variance

52 = L ggp (BK*) - %SSE (BH*)

Vy*
for use in the finetuning of the second step of the selection procedure, which is the step leading
from the pilot B,{ to the final @K. The finetuning in that second step aims at minimising the
prediction error or its estimator (3), this time with taking v, to be the degrees of freedom under
orthogonal projection without shrinkage.
The degrees of freedom are further developed as
Ve = %E [e"Ps, Y] = %E [0Z"Ps, (n+0Z)] = E[|Ps,Z|3] + %uTE [Ps,.Z].

If the selection S, were independent from the sample, then E [|Ps, Z||3] would be equal to
Tr(Pg, ) = K, and E [Ps, Z] would be the zero vector. The interaction between the noise and
the selection makes the set S,; and the vector Z depend from each other, which is precisely the
topic of this paper.



Assumption 2.2 As in Jansen [2014], it is assumed here that the dependence of S,, and Z
has an effect on the magnitudes of the errors after selection, and not so much on the signs.
More precisely, it is assumed that

ve = E[|Ps.Z|2] + 0 [PE(BH)] as n — . (5)

The offset
my = (v = K)o*/n = B[|Ps, 213 — ] o*/n + o | PE(B,) | (6)

corrects a Mallows’s C,, criterion assessing a given, fixed model A(@H) = %SSE(BH) +28452 52

n

for use in parameter selection, as indeed, from (5), E(A(ém)) = E(A(ﬁn)) +2my +o [PE(EH)] ,

keeping in mind that £ (A(B@) = PE(,@H). The offset m,, thus describes the effect of the
selection procedure onto the degrees of freedom. Furthermore, the correction can be seen as
a double reflection [Jansen, 2014], on both sides of a “mirror” function PE(83o,.), in the sense
that

m = PE(B,) — PE(Bo,) + 0| PE(B.) | = PE(Bo,) — E (A(B,)) +0[PEBY|. ()

The mirror function PE(,@OK) is given by the prediction error of a least squares estimator ,@on =
(XgNXOK)_ngNY, on a selection O,, made by an oracle observing the response without
noise, X3.

The evaluation of the mirror correction (6) in practical situations, where no oracle is avail-
able, is non-trivial, as it depends on the adopted selection procedure, the size and structure
(nested, trees, etc.) of the set of models under consideration, the design matrix X. A bootstrap
or any other resampling procedure, for instance, is hard to set up, precisely because m,, de-
scribes the interaction between the noise in the original sample and the selection. Monte-Carlo
simulations can be used in the calculation of the subsequent estimation. The estimation devel-
oped in this paper starts from the straightforward application of the law of iterated expectations,
stating that m,, = E(m,,) where

My = [E (HPSKZH%|SH) - "‘f] ‘72/”7 (8)

which is random, sample dependent through the conditioning on the sample dependent selec-
tion S,. The central point in the development in the subsequent sections (in particular Section
3.3) will be the understanding of what it means to have observed the event S,. In other words,
we need to quantify the exact information provided by the selection S, at the level of each
selected or active parameters 3;, I € S,. The issue is related to problems in the domain of
post-selection inference. Post-selection inference may proceed in basically two ways. The first,
generalistic approach aims at confidence intervals that are valid, regardless of the selection



procedure (possibly limited to a certain class of selection or models) [Berk et al., 2013]. The
second approach, related to the discussion in this paper, operates on a conditional, rather than
a generalistic level, looking for the conditional distribution of estimators, given a specific selec-
tion procedure [Charkhi and Claeskens, 2018]. Our paper studies the effect of the selection on
the degrees of freedom and the information criterion, not on the subsequent inference.

The remainder of this paper is devoted to the development and the estimation of the correc-
tion m, in two graphical models.

3 Finetuning a tree selection

The first application of the proposed selection based information criterion consists in finetuning
a backtracking algorithm for best «x-subtree selection. Applications are situated in Best Orthog-
onal Basis selection [Coifman and Wickerhauser, 1992], classification and regression trees
[Breiman et al., 1984], tree structured wavelet regression [Jansen, 2022], and wavelet packets
pruning.

3.1 A tree structured model of covariates

The best k-subtree selection operates on the linear regression model in (1). It replaces a lasso
procedure, such as LARS [Efron et al., 2004] or a proximal gradient or subgradient method.
The tree structured selection rests on two assumptions, leading to a more specialised selection
procedure. The first assumption concerns the set of models to choose from. Denoting a model
by the subset of the indices S — {1,2,...,m} corresponding to the nonzero components of the
parameter vector 3, the tree structured selection restricts the search to subsets satisfying an
imposed hierarchy in a way explained below. The hierarchy is supposed to reflect additional
information on the physical nature of the covariates, by stating that a given covariate cannot be
part of a model unless at least another specific covariate is selected as well. It thus defines
for every component i € {1,2,...,m}, termed a node in this context, a unique parent node
p(i) € {0,1,...,m}, where p(i) = 0 means that the node has no parent, i.e., it is a root. An
important special case is that of the binary tree rooted at node 1, which has p(i) = |i/2],
where |z] is the floor function of z. The tree selection developed below works on general, not
necessarily binary, trees and even in the presence of multiple roots. An extreme example of
the latter is the case where p(i) = 0 for all nodes i, leading to the situation where there is no
hierarchy and all nodes are roots.

Assumption 3.1 (tree structured selection) A valid selection S satisfies the hierarchy in the
sense thatie S = p(i) € S.

The second assumption puts restrictions on collinearity.

8



Assumption 3.2 (frame condition) Let the m columns of the design matrix be {2 normalised,
i.e., the diagonal of XX is the identity matrix. Then we assume the existence of a matrix X
with the same size n x m as that of X, and of two positive constants v and T, independent from
n and m so that for any u € R",

Yo 2 1 2 I' &~ o
—|IX < — < —|X )
IR pl3 < ~lplf < —|Xpl3

while XX ism /n times the nxn identity matrix. For each selection S, the estimation is supposed
to be constructed by composing the hat matrix Xg from the columns of X corresponding to the
elements in S.

In this setting, the hat matrix )NCS is not constructed after but before selection, from the full hat
matrix f(, whose columns depend on all columns of X, not only on the selected ones in Xg.
More precisely, we have Xg = (n/m)DgX. With k the cardinality of S, the matrix Dg is a k x n
diagonal selection with elements Ds.;; = 1 if the ith element of the sorted sequence from S
equals j, fori=1,2,... k.

An example of the matrix X is the pseudo-inverse (or Moore-Penrose inverse), while the
smallest and largest singular values of X can be associated to /ny/m and y/nl'/m respec-
tively. When n = m, such as in a fast (decimated) wavelet transform, the matrix X corresponds
to the forward (analysis) data transform while the matrix X represents the reconstruction. In
non-orthogonal transforms, the forward transform X does not coincide with the pseudo-inverse
of the reconstruction.

The vector 8 = (n/m)Xp is a valid model, in the sense that X3 predicts the observations
from the DGP exactly. In the presence of noise, ¥ = (n/m)XY is an unbiased vector of
pseudo-observations of 3. The sparse estimator 55 is then given by diagonal selection of the
pseudo-observations, 55 = DgY.

Because of Assumption 3.2, the prediction error of an estimator Bs is bounded by

M R(fs) < PE(Bs) < LR (Bs),
where R(BS) is the risk or prediction error on the selected pseudo-observations,
~ 1 ~
R(Bs) = —EBs — Bl3 (9)

The prediction error R(BS) can be estimated by an information criterion as in (3), defined
on the pseudo-observations. We have

SSE(Bs) = |[Y —DsY |3 = [V - Y. V2 (10)
LeS



With Z = X Z, the degrees of freedom are given by vs = E [HDSZH%] - E [ZZES Z?] , taking a
possible sample dependence of the selection S into account.

3.2 Best x-subtree selection

The best k-term model S, is supposed to be the subtree that maximises the amount of infor-
mation accumulated in its x elements, under the constraint of the hierarchy imposed by the
parent function p(i). The amount of information is quantified by an accumulative mass function
M(S;Y), where
M(S;x) = > Mi(x;). (11)
€S

The mass function is accumulative in the sense that if S; n Sy = O, then M(S; U Sy;x) =
M(S1;x) + M(S9; x). The elementary mass functions M;(z;) are supposed to be convex with
absolute minimum at zero. Most often these functions will be taken to be symmetric, leading to
non-decreasing function of |z;|. Simple examples include the choices M;(z;) = |x;| or M;(x;) =
|z;|?, the latter being the default choice in the subsequent discussion. The function M; may
depend on 4, allowing us to attach more importance to some nodes, regardless of their values.
For instance, nodes close to the root may be a priori more important that nodes further away.

The backtracking algorithm for searching S,; finds the solutions for all x at once. It extends
weakest link or cost complexity pruning techniques to trees whose subsequent best x-subtrees
(for increasing k, that is) cannot be guaranteed to be nested. It proceeds as follows

1. Take as input a vector x in n nodes on which lies a hierarchy, defined by a function p(i)
that maps each node onto its parent. The objective is to find for each « the selection S,
maximising M (S; x), defined in (11) among all subsets S with « elements and satisfying
the hierarchy.

2. If the set of nodes i with p(7) = 0 has more than one element, then introduce a “superroot”
as a parent to all these nodes. The result of this step is a rooted tree. Define for each
node 4, including superroot i = 0, the set of its children C; = {j|p(j) = ¢}. Let A denote the
set of active nodes, i.e., nodes open for further processing, initialising A — {1,2,...,n}.
Initialise 5 < 0, and the depth d < 0.

3. While the set A is not empty,

(a) First descend into the tree, as far as possible
While C; n A is not empty:
+ Set j <« min(C; n A).
» Setd«—d+1.

10



« Initialise or re-initialise the best 1 subtree, rooted at the current node at depth d,
S1,a < {7}

(b) We are now at a node j that has no active children. This node is merged with its
parent, i = p(j). Find the best combinations of subtrees of parent and child, thus
incorporating the subtrees of j into those of i.

Forkx=1,2,...

* Find ¢ = arg _max [M(S1d-1;2) + M(Sk—1,4:)] -

* SetSc g1 =5Sr4-1USk—r4.

(c) Take j out of the active set A. Then go one up one level, i.e., d <— d—1,and j < i.
If the new j still has children within the active set, a new descent will take place along
one of these children. Otherwise, j will be merged with its parent, and so, until all
nodes have been visited and merged.

4. SetS, « Sy

Once the selections S,; have been found, finetuning amounts to choosing « according to the
criterion obtained by substitution of (10) into (3). The calculation of the degrees of freedom in
(3) requires some further attention, as discussed Section 3.3.

3.3 The effect of the selection on the degrees of freedom

Further development of m, in (8) is based on symmetric mass functions M;(u). If M;(u) is
symmetric, then there exists a random threshold 5,.“-, depending on all Y; with j + i, so that

i€S, e Y| = 0,
From this it follows that

M = (02/n) Y {E [23

€Sk

7o) -1},

K3l

which, according to the main result in Marquis and Jansen [2022], can be well approximated
by replacing the sparse vector 3 in the model of the pseudo-observations Y by the zero vector.
More precisely, it holds that

E [Z?

}71-2>§24]:E[Z2

Kt

72 > 82,] + o(R(x)). (12)

Unfortunately, to the best of the author’s knowledge, there seems to be no fast way to find or
even approximate the functions that map the pseudo-observations Y onto the thresholds Osi-

11



As an alternative, the expected values E(m,) can be approximated numerically quite well by
running Monte Carlo simulations with 3 = 0 and computer generated, pseudo-random vectors
Z on top of the tree structure specified by the parent function p(i). The numerical simulation
thus adopts the same approximation as (12).

3.4 Application to regression trees

Let Y = p + m, where n represents uncorrelated, zero mean noise, while the vector u is
modelled to consist of constant segments, separated by change points from a set CP c {i +
1/2,i = 1,2,...,n}, meaning that u; = p;41 unless i + 1/2 € CP. The objective is to identify
the set CP. With CP the estimated set of change points, the elements of the vector . can be
estimated by .

=Yy = —— Y,

O TG g@) "
where I(i)isthe set {I,1+1,...,r} sothatie I(i),and I — 1/2,r + 1/2 € CP, while {¢ +1/2,¢ e
I1())} ~n CP = @.

The search for candidate change points proceeds through a greedy tree construction, start-
ing with Ioo = {1,2,...,n} and ng = 1. Thenfor j = 0,1,2,...andfor ¢ = 0,...,n; — 1, find a
partitioning of the set I, = I;;120 U Ij112¢+1, @S long as I, has at least two elements. The
partitioning is defined by a new candidate change point t;, + 1/2, fixing ;190 = {i € Ij ;1 <
tje +1/2} and I, 2041 as its complement. The value of ¢;, is chosen to maximise a contrast
function ¢;, = (Y, I ¢, Ij+1,2¢), in which the argument I, o, depends on t;,. It is clear that
the set of all 1, , constitute a binary tree rooted at Iy o, referred to as the refinement tree. When
the refinement is pursued until all leaves I; , are singletons, then the tree has 2n — 1 nodes in
total, root and leaves included.

The contrast c; , may or may not coincide with the absolute or squared value of the offset or
detail

Y2001 — Y120

M
1 1
; + o
Nj41,2041 nj+1,2¢

where n;, is the cardinality of I;, and Y, the average value of Y on I;,. The n — 1 detail
coefficients d;, can each be associated with the corresponding internal node I;, in the re-
finement tree. The detail coefficients are completed by a single overall normalised average
value spo = +/n - Y. Within a given refinement tree, the mapping of the vector Y onto the vec-
tor of details and overall average is an orthogonal transform. This transform is known as the
data-adaptive, unbalanced, orthogonal Haar-wavelet transform (AUHT) [Girardi and Sweldens,
1997]. Selection of éf’n then amounts to the selection of the best x-subtree T}, of the refinement
tree.

dje =

12



The quality of 7,, can be measured in the prediction error PE(u,) = 1EHﬁ u)3 and
estimated by A(u.) = L|a — Y|} + 202 — 2. Thanks to the orthogonality of the AUHT, it
holds that 5

D W ITE R
" (5,08,

The degrees of freedom v, can be approximated using (6), which amounts to
ve ~ E[|Ps, Z]3]. (13)

The Monte Carlo calculation proceeds by running the tree selection procedure on a pseudo-
random vector Z.

3.5 A simulation study with change points under Poisson noise

If the noise inthe model Y = u+n is uncorrelated but heteroscedastic, then the AUHT vector d
will be heteroscedastic as well. Let W denote the data-adaptive matrix that maps Y onto d and
define v = Wy, then a large value of d; , may be due to large variance or to a large absolute
expected value. The distinction between these two cases is quantified by taking a standardised

prediction error,
" 1 e —vie )’
PE(D — 7 75 ) ,
(©r) n% < 7j
where o2, = var(d; ;). This prediction error is estimated by

d? 92
Mow) =~ 3 St 2 (14)
n . g n
(10T~ 9k

We apply the procedure to Poisson distributed observations with intermittent intensities, as
illustrated in Figure 1. The sample size is n = 4000. The intensity curve, depicted in solid
black line, is taken from the well known ‘blocks’ test function [Donoho and Johnstone, 1994],
vertically translated by adding 3.5, in order to create comparable settings as in the simulation
study in Jansen [2007]

The variances o7, are estimated as the diagonal elements of the estimated covariance
matrix

$q=WSyW',

where the matrix Sy is obtained as the diagonal matrix whose elements are pilot estimators
o, of u; = var(Y;). The pilot estimator is obtained from an unstructured, threshold based

13
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Figure 1: Poisson intensity curve (black line) along with n = 4000 corresponding pseudo-
random Poisson observations. The objective is to retrieve the change points (discontinuities) in
the black curve. The intensity curve is obtained by adding the value 3.5 to the values of the well
known ‘blocks’ test function [Donoho and Johnstone, 1994]. The intensity curve has n; = 11
change points, numbered 1 to 11 for further reference.

selection fip = W19, where

o,k = ST(dj k/000,5,k: A) - 0005, k-

Here ST (z, \) = sign(z) - (|z| — A) - I(|z| > A) is the soft-threshold function, in which I(|z| > \)
is the indicator function, i.e., I(|z]| > A\) = 1 < |z| > X and I(|z| > A\) = 0 otherwise. The
threshold in the pilot estimator is selected by a GCV or C, criterion as well. The pre-pilot
estimator oq ;1. is obtained as a diagonal element in the unbiased estimator of the covariance
matrix Wdiag(Y )W?. The reason for not taking this unbiased estimator in the tree structured
selection and estimation lies in the large variance of the unbiased estimator, adding fluctuations
to the standardised data, thus falsely suggesting the presence of change points.

The Figures 2 and 3 depict two reconstructions of the Poisson intensity curve in Figure 1.
Both reconstructions operate on an AUHT based regression tree, in which the contrast function,
used in the AUHT refinement is given by

Y1201 — Yjg1,20
Cje = )
1 1 a
_l’_
(”j+1,2£+1 ”j+1,2l>

where ¢ = 1 would lead to ¢;, = d;,. Higher values of ¢ promote balanced refinements, i.e.,
splitting an set of points I, , near its midpoint. It is found empirically that ¢ = 2 leads to better
results that ¢ = 1, although the issue requires a closer look in further research.
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Figure 2: Reconstruction of the Poisson intensity curve (black line) in Figure 1 using soft-
thresholding applied to the AUHT coefficients of the observations (grey line in Figure 1). The
threshold is finetuned by minimisation of the Generalised Cross Validation score, defined in (4).

The reconstruction in Figure 2 adopts simple, unstructured soft-thresholding on the AUHT
coefficients, where the threshold is chosen by minimisation of the GCV expression in (4). The
degrees of freedom in a soft-threshold scheme are given by v, = « [Zou et al., 2007, Tib-
shirani and Taylor, 2012, Jansen, 2015]. The reconstruction in Figure 3 is obtained from the

Tree structured selection
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Figure 3: Reconstruction of the Poisson intensity curve (black line) in Figure 1 using tree struc-
tured selection of the AUHT coefficients of the observations (grey line in Figure 1).

best x-subtree selection of the AUHT coefficients. The value of « is found by minimisation
of A(v,) in (14). This minimisation is visualised in Figure 4, which compares several criteria
for the evaluation of a best x-subtree. Leave-half-out Cross Validation, marked as CV in the
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figure and reported as an appropriated option for applying cross validation in the context of
variable selection [Yang, 2007] clearly minimises at too large subtrees (even beyond the range
depicted in the figure, not to mention the fluctuations in the curve). Naive use of Mallows’s C,,
(with v, = k) leads to a similar behaviour. The plots of CV and C,, in Figure 4 are represen-

A

Figure 4: Curve of the estimated prediction error A(v,) as a function of the size (number of
nodes) « of the selected subtree. For comparison, the figures also depicts the true prediction
error, PE(v,), and the GCV alternative for the estimated curve, using (4). Alternatives not using
the mirror correction include the naive implementation of Mallows’s C), with v,, = s and classical
leave-half-out cross validation (CV). These two methods do not come close to identifying the
correct optimal «, leading to overestimated subtrees. The curve of C), as a function of « can be
seen to be the reflection of the A(v,) curve w.r.t. mirror, i.e., the oracular PE-curve, PE(vg,,).

tative for the essential problem that affects any parameter selection (not just tree structured
approaches) based on information criteria: right after the initial, straightforward selection of the
most prominent covariates, characterised by a steep drop of the criterion’s value, the selection
procedure enters a more critical phase, in which it has to distinguish among more questionable
candidates. In this phase, any information criterion will encounter insignificant candidates with
an accidentally high score. This high score comes from the fact that the false positive covari-
ate carries more noise than an arbitrary insignificant covariate. This discrepancy is described
by the mirror correction: a false positive covariate may appear to be the best candidate for
selection, whereas in reality it induces more noise than the acceptance of a random candidate.

The minimisation of the A(v,) as a function of the subtree size « leads to the subtree
depicted in Figure 5, which in its turn gives rise to the reconstruction in Figure 3. The selected
subtree contains the root of the AUHT refinement tree, which represents to overall average
value. It also contains twelve nodes corresponding to refinements in the construction of the
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Figure 5: Subtree selected by minimising A(9,) in Figure 4, leading to the reconstruction £ in
Figure 3. The first ten levels of the full AUHT tree are depicted in background grey.

regression tree. Eleven of these twelve refinements can be associated to a real change point
in the intensity curve, as can be seen from the nodes being marked with the corresponding
change point number in Figure 1. One refinement does not correspond to a real change point,
making it a false positive. As the corresponding node fathers two real change point nodes,
this false positive is due to the construction of the AUHT, not to the tree structured selection
algorithm, nor to the finetuning of that selection based on the minimisation of the information
criterion. Also note that none of the eleven real change points were missed.

Figure 6 and Table 1 summarises a simulation study for 200 realisations with the same
blocks signal intensity curve. The Figure plots the positions of the true positives across the
simulation runs, leaving a gap whenever the change point was missed in a simulation runs
(these gaps occurring mainly on the curve of change point number 10). The plot reveals, not
surprisingly, that the false negative probability (i.e., the gap probability), as well as the variance
of the estimated location (i.e., the fluctuation of the curve) of a change point depends on the
height of the change and on the range on both sides of the change point (i.e., the distance to
the nearest change point on the left and the right).

3.6 A simulation study with varying model sizes

The importance of using modified information criteria in the selection of sparse subtrees can
also be illustrated by looking at the size of the selected subtree as a function of the true
model size. To this end, the subsequent simulation study reconsiders the full tree structured
model depicted in grey in Figure 5. For the purpose of this simulation study, the link with
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Figure 6: Simulation study of 200 runs, plotting for each change point the locations of its esti-
mator throughout the 200 runs.

Proportion of mis-
sing change points
0 1 total

— ©0/300 15 315

221|335 30 365

£%2/190 0 190

$a3| 70 0 70
()]

Sh4| 45 0 45

“85 15 0 15

total | 95.5 3.4 100

Table 1: Percentages of reconstructions subdivided according to number of missing change
points and number of false positives.

change point analysis in Poisson data is omitted. Instead, for each of the true model sizes
k = {1,2,...,200}, the study constructs, at random, a x-subtree S, of size x. All nodes i € S,
receive, independently from each other, a value u; from a Laplace distribution, meaning that
these values of u; are independent realisations from a random variable with density function
fu(m) = (£/2) exp(—£|m|), where hyperparameter ¢ equals 1/5 throughout the simulation study.
The other nodes, i ¢ S, have a value p; = 0. To all values of y;, with 7 in and outside S,; alike,
zero mean, independent, homoscedastic, normal noise ¢ Z; is added, in the normal signal-plus-
noise model Y = u + 0Z. The objective is to estimate the subtree S, from the observations
Y, using the information that the set of nonzeros in p constitutes a subtree. The experiment is
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repeated a hundred times on the same « subtree, each time with newly generated values of u
and Z.
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Figure 7: Median sizes (thick lines) along with lower and upper quartiles of the Mallows’s C,,
selected trees as a function of the size of the true subtrees in hundred replicates within the full
tree structure represented depicted in grey in Figure 5. The solid line depicts the median sizes
of the criterion proposed in this article. The corresponding quartiles are hardly visible. The
dotted line depicts the median sizes of the classical criterion, against a clearly visible shaded
background of the interquartile ranges. The grey, thick line is the identity function. The plots
confirm that classical criterion is unsuited for use in a context of sparsity.

Figure 7 depicts the sizes of the selected trees, S; as a function of the true sizes of the ran-
domly chosen subtrees S,.. The selection of S; proceeds by minimising the C,, criterium in (3)
or (14) for the estimation the the prediction error. The plots in the figure compare the classical
C,, criterium with the newly proposed version in this paper. The dotted line in Figure 7 is the
median curve of outcomes when using the classical criterion, given by (14) with v, = k. The
median is taken over the hundred replicates of the signal-plus-noise model with given S,;. The
shaded band represents the interquartile range, i.e., the lower and upper empirical quartiles of
the hundred replicates. It is clear that the estimated trees, Sz, unacceptably overestimate the
true subtree S,;. Using the C,, criterium (14) with v,; as in (13) leads to the median curve in solid
line and the associated interquartile range, nearly too narrow to be visible behind the thick me-
dian line. This confirms that the variance of the estimated tree size is much smaller. Moreover,
the median curve is close to the identity curve, suggesting that the modified criterion succeeds
in finding most of the true subtree. The modified criterion tends to slightly underestimate the
true subtree, meaning that it tends to miss a small proportion of significant nodes. This is ex-
plained by the presence of small nonzero values of x; near the leaves of the true subtree. Such

19



values are likely to be missed by any selection procedure when the noise relatively large.

3.7 Comparison with modified information criteria for finite samples

Modified information criteria have also been proposed in the finite sample setting, typically when
the number of candidate covariates reaches 10% of the sample size [Broersen and Wensink,
1998, Broersen, 2000, Broersen and de Waele, 2004, Mariani et al., 2015, Stoica and Selen,
2004], i.e., when m > n/10, using the notations of this paper. In the simulation studies of
Sections 3.5 and 3.6, we have m = n. Although this meets the conditions m > n/10, there is
a fundamental difference with the finite sampling setting. Indeed, in the finite sampling setting,
the set of covariates is relatively large compared to the sample size, because the sample size
is far from infinity. As a result, the asymptotic results supporting the well known criteria such as
AIC, are to be amended for finite samples. On the other hand, in the sparse, high-dimensional
setting of this paper, both m and n are supposed to be large, i.e., can be thought to grow
to infinity. Whereas in the case of finite sampling, the true model size x typically remains a
constant along with m, a sparsity model often assumes that ~ grows slowly with n. Further
distinctions are made based on the ratio «/n when both tend to infinity.

The simulation in Section 3.6 is illustrative for the difference in settings. The plot in Figure
7 has small values of « on the left side. In a finite sample size experiment, the small ration x/n
would correspond to the case of sample size growing to infinity, hence to the classical case.
In the high-dimensional setting, it reflects growing sparsity. It can be seen in Figure 7 that
small values « lead to the largest discrepancies between the classical and the newly proposed
information criteria, thus corresponding to the situation where the correction of the classical
approach is most needed.

4 Sparse graphical model selection

4.1 Model and estimation

In the second application, the information, i.e., the parameters to be selected, estimated, and
inferred, are not situated at the nodes of a tree but rather in the edges of a graphical model. The
graphical model represents the concentration or precision matrix of a large multivariate normal
random variable, X ~ N(u,3). The concentration matrix is the inverse of the covariance
matrix, K = X!, assuming the regularity of that matrix. The concentration matrix describes the
conditional dependencies between the components of X. Indeed, let X, with c € {1,2,...,m}
be one of the components of X and denote by ¢’ the complementary set of indices, i.e., ¢ is
{1,2,...,m} without c. Furthermore, let Y. denote the observation of X, conditioned on the
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other values X, i.e., Y. = X.|X . Then it holds that
Yo~ N(—K Ko (Xo — por), K. (15)

In the subsequent discussion, we assume that p, which is of no interest in the question of con-
ditional dependencies, is known to be zero. Learning the concentration matrix can be identified
as a so-called nodewise regression problem [Meinshausen and Buhlmann, 2006, Zhou et al.,

2011]Y, = X7 B.+0.Z., where o, = Ko.'/* while Z, = Ki*(Y.— X7 3.) is a standard normally
distributed random variable and 87 = —K_!K_ .. Repeated observations X;, i = 1,2,...n,

of the m-variate X define for each component ¢ a n x (m — 1) design matrix X7, each row
corresponding to one observation in the regression model.
With a sample size n larger than m, it can be hoped that the sample covariance matrix

has full rank, so its inverse K = £-1 may serve as an estimator of the concentration ma-
trix. In any case, only a non-singular K can be the maximum likelihood estimator of K in the
multivariate normal model. Indeed, the log-likelihood is given by

log L(K) =

4 2

o[l 1
[2 logdet K — % log(27) — XZTKXZ] ,

)

which is unbounded if det K = 0. As

n

n n n
Y XTKX; =) Tr (X[KX;) = ) Tr (KX X[) = Tr <K > XiXZ-T> :
i=1 1=1 i=1 i=1

the log-likelihood can be written as log L(K) = § [log det K —Tr (Kf]) - mlog(27r)] . A 'local
maximum is reached in ﬁML if VlogL (KML) equals the zero matrix. As Vlogdet K = KT

and VTr (Kf)) = ST this can be verified to develop as Ky, = I. The solution provided

by nodewise regression [Meinshausen and Biihlmann, 2006] satisfies this equation if 3 is non-
singular, but not otherwise. Nodewise regression does not impose symmetric concentration
matrices explicitly, although symmetry of K, follows automatically whenever Ky, is indeed
the maximum likelihood estimator. In practice, the computation of Ky, is often unstable, even
when n is larger than m. The graphical lasso [Banerjee et al., 2008, Friedman et al., 2008,
Mazumder and Hastie, 2012, Sojoudi, 2016] obtains a regularised estimator K, by the maximi-
sation
K, = arg max [log det K — Tr <K2) — )\HKHl] ,
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where |K|; = Tr (Ksign(K)") stands in this case for the sum of the absolute values of all
elements in K (hence not for the classical induced ¢; matrix norm). Solvers for this constrained
optimisation problem have been proposed based on an iterative sequence of lasso solvers,
where each iteration step works on one column of S, keeping the other columns constant in
that iteration step. The iterative solving increases the computational complexity, compared to
nodewise regression [Meinshausen and Bihlmann, 2006], which is an issue if we want to equip
the solver with a finetuning of the regularisation. In applications involving big data, the nodewise
regression procedure is easy to implement on parallel computers. Moreover, while in a simple
lasso problem the link between the regularisation parameter A and the size x of the active set
is easy to establish, this problem is nontrivial in the framework of graphical models for sparse
concentration matrices. For these reasons, we adopt the direct solver of Meinshausen and
Blhlmann [2006] as selection method. Once the set of nonzeros in the concentration matrix
has been selected, estimation within this set takes place according to a constrained maximum
likelihood principle, as outlined in the following section.

4.2 Estimation of the nonzero elements in the concentration matrix

Let Syw < {1,2,...,m} x{1,2,...,m} be the selection by the lasso in the nodewise regression
framework. A pair (7, j) € Sxw means that the corresponding entry in the estimated concentra-
tion matrix is nonzero. The selection proceeds row by row by application of lasso to the vectors
Bl = —K;&KQC/ with ¢ € {1,2,...,m} in the linear models (15). The selection is finetuned by
optimisation of the criterion

~ A 1 ~ 9 .
Ae(Ber) = —SSE(Ber) + —02 + 2y — 02,
n n

i.e., by filling in (6) into (3), and estimating the correction as in (8). As before, a pilot estimator
can be used to deal with the nuisance parameter o2. The nodewise lasso offers no automatic
symmetry in the selection. The subsequent discussion assumes the selection Syyw to be sym-
metrised by keeping the pair (i, j) in Sxw if and only if (j,7) was also selected.

Once Syw has been identified, the shrinkage estimator of the lasso is replaced by the con-
strained maximum likelihood estimator KML,S, maximising log L(K) under the condition that
IA(MLVSM = 0 unless (i,7) € Sxw. Introducing a matrix of Lagrange multipliers Ag with /A\s;ij =0
whenever (i,j) € Snw (for the corresponding element of IEML’S is unconstrained), the con-
strained maximum likelihood problem is given by

IA{MLys = arg mlzgx [log det K — Tr (Ki) —Tr (K.//is)] .

Taking the derivatives w.r.t. the elements in K leads to K~7 — £7 — AL — 0. The condition that
fxs;ij = 0 for (i,§) € Sxw then means that the gradient Al = ViogL (K) = K-7 — X7 must
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have zero entries in all (¢, j) € Sxw.

Unless Snw contains all possible pairs (i, ), nodewise regression cannot possibly find this
constrained maximum likelihood solution. Indeed, Let (i, j) ¢ Sxw, then K;; = Kj; is imposed
to be zero. This affects all other ;, and f(jk at rows i and j of K. Nodewise regression at row
¢ = k, unaware of the zero f(ij, will find values f(m» and f(kj as if there is no constraint on f(ij.
The resulting estimated concentration matrix cannot be symmetric (even though the selection
Snw is symmetric), nor can it maximise the likelihood. Let KNW,S be the outcome of constrained
nodewise regression, then a symmetrised version of it, for instance (IA{NW,S + IA{§W7S)/2, can be
used as initial value in an iterative search for IA{ML,S. An iterative search can be implemented by
projection of the gradient A onto the space of admissible descends, i.e., replacing the partial
derivative w.r.t. K;; by zero if (i,5) ¢ Sxw. The iteration stops as soon as the other partial
derivatives, those w.r.t. elements in Syw are zero.

Let Ago denote the search direction, then the iteration step updates the current solution K
to K +wA{, where w maximises the function g(w) = log L <K + wA§0> . Taking the derivative
yields

g'(w) = Tr [(T+ KAL) K~'AL, ] - Tr | A%,

With ~ denoting the vector of eigenvalues of K*lAgo, this is
m

/ Vi SAT
w) = E —Tr [EA ],
) i=11+w% 5,0

whose zero can be found numerically.

4.3 A short simulation study

Before proceeding to a real data analysis, a short simulation study reveals some understanding
in the working of the proposed sparse selection method. Figure 8 displays the setting of the
simulation study of Meinshausen and Bihlmann [2006, p.1448], along with the outcome of the
proposed refined Mallows’s C,, criterion in nodewise regression. The results in the figure were
obtained from a sample of n = 600 independent observations of a m-variate normal random
vector X, with m = 1000. For the sake of the graphical representation, the components of X
are associated with random nodes in a 2D scatter plot, depicted in the Figure. The positions of
the nodes have no physical meaning, except for their role in the generation of the concentration
matrix. The concentration matrix K is sparse in the sense that at most n, = 4 nonzero off-
diagonals appear on each row and each column. Nonzero K;; are selected at random, but with
probabilities roughly inversely proportional to the distances between the nodes corresponding
to the ith and jth components of X. The graph representing K will therefore show short edges
between adjacent nodes, as can be seen in Figure 8(a). Initially, the values of the nonzero
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Figure 8: Simulation of a nodewise regression on a sample of n = 600 observations of m-
variate normal random vector, with m = 1000, as in Meinshausen and Bihlmann [2006]. (a)
Graph representing the sparse concentration matrix K. (b) Estimation of the graph based on
the proposed refined Mallows’s C,, criterion. (c) False positives and false negatives (type | and
type Il errors). The false positives are the long edges, connecting components i and j far from
each other in the scatter plot. (The estimation method is not aware of the distances in the

scatter plot.)
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Figure 9: (a) Lasso shrinkage estimation using the oracular information that the number of
edges in each node is bounded by four. (b) Nodewise regression using Lasso shrinkage imple-
mented by LARS with Mallows’s C,, as stopping criterion.

off-diagonals in K are set to (1/n. — 0.005) = 0.245 to guarantee positive definiteness of K.
After inversion of the initial matrix K, the resulting covariance matrix is standardised by left-
and right multiplication with a diagonal matrix so that the diagonal elements of the covariance
matrix (the variances, that is) are all one. The concentration matrix is rescaled accordingly.

As illustrated in Figures 8(b) and 8(c), the proposed method cannot eliminate all false pos-
itives (type | errors), nor does it prevent the occurrence of false negatives (type Il errors).
Instead, it succeeds in finding a delicate balance between the two objectives. Theoretic results
quantifying these findings are interesting topics of further research. At first sight, the result
in Meinshausen and Bihimann [2006], depicted in Figure 9(a), is superior, were it not for the
upperbound of four on the number of edges in each vertex, used throughout the nodewise re-
gression. In some applications, knowledge of such an upperbound may be available, whereas
in other applications, this information should be considered as oracular. In absence of this in-
formation, LARS equipped with the classical C,, based stopping criterion (having « instead of v,
as penalty in (3) would lead to a massive overestimation of the true model, as depicted in Figure
9(b). Alternatively, a selection with focus on the false discovery rate may be too conservative,
leading to an uncontrolled number of false negatives.
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4.4 A real data example

The symmetrised nodewise regression approach with the proposed refined Mallows’s C), is now
applied to the gene expression measurements reported in Spira et al. [2007] and analysed in
Danaher et al. [2014] to illustrate the graphical lasso across multiple populations. The data are
available from the Gene Expression Omnibus [Barrett et al., 2005], https://www.ncbi.nlm.
nih.gov/geo/, accession code GDS2771.

The observations come from two populations: n; = 90 individuals belong to the control
group, while no = 97 patients have been diagnosed with lung cancer. The objective is to in-
vestigate whether the diagnosis explains differences in covariance structure between the gene
expressions. Just like in Danaher et al. [2014], the genes in the upper 20% quantile of the
expression variances are taken out from further analysis, because covariances among these
genes are supposed to be dominated by noise. The expression measurements of the remaining
m = 17827 genes (out of 22283 originally) are studentised within each population.

Let X; ~ N(u1,31) denote the gene expressions in the control group and X ~ N (p2, ¥9)
those of the patients, then the symmetrised nodewise regression with the proposed refined
Mallowss C,, criterion (with the same settings as in the simulation study) selects k7 = 16198
and k3 = 13134 nonzero concentration values KW = Kﬂ, withl < i < j < m. Inaful
model of m(m — 1)/2 concentration parameters, these selections account for and 0.0102% and
0.0083% of nonzeros respectively. Motivated by application specific, practical considerations,
the selections in Danaher et al. [2014, Sections 6 and 8] are even sparser. It may be interest-
ing, however, to allow a wider (yet still very sparse) selection in a first stage, as illustrated by
Figure 10. The Figure depicts the ordered magnitudes of the selected off-diagonal elements
of the concentration matrix (the elements that are represented by an edge in the graphical
model). The values are compared with those obtained by applying the same estimation to n
Monte-Carlo observations from a vector of independent normal random variables. The simu-
lated variables have the same variances as the observed ones, in the sense that the variances
in the simulation are taken from the diagonal of the sample covariance matrix. With diagonal
covariance and concentration matrices, the graphical model of the simulated data is know to
have no edges. As the refined Mallows’s C,, criterion of this paper reduces false positive se-
lections, it can be expected that the size of the selected set is much smaller in the simulated
data than in the observed control and patient data. Therefore, for the sake of comparison, the
selection on the simulated data uses the classical definition of Mallows’s C,, by taking v,, = «
in (3), leading to a vast selection of all false positives. Comparing the magnitudes of these
false positives with the selected values in the observed data reveals that they are much smaller
and flatter when sorted. This suggests that the selected values in the two populations do have
some significance.
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Figure 10: Sorted magnitudes of the selected off-diagonal entries of the concentration matrix.
Comparison with (falsely) selected off-diagonal entries in a simulated vector of independent
random variables.

5 Conclusion

Parameter selection in high dimensional data is often monitored by practical, application driven
considerations or by methods explicitly controlling the false positives to at least some degree.
Information criteria, such as Mallows’s C,,, but also AIC and others, are often found to be too
tolerant of false positives. This paper has explored the use of more a refined Mallows’s C,,
criterion in high dimensional graphical and tree models. The classical definition of Mallows’s
C,, designed for assessment of a fixed model, works well for finetuning a lasso shrinkage
selection. As lasso shrinkage is tolerant of the presence of false positives, this finetuning leads
to largely overestimated models. In contrast to this, the refined criterion developed for graphs
and trees in this paper, focuses on finetuning selection for estimation without shrinkage. This
way, the refined criterion, carefully balancing false positive and false negative selections, proves
to be interesting in applications where the avoidance of both false positives and false negatives
are important objectives.

6 Software

Software for the reproduction of the figures is available in the Matlab package ThreshLab, avail-
able on https://maarten. jansen.web.ulb.be/software/threshlab.html. After installation,
type help makefigsdoftreesandgraphs to get started.
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