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Abstract

The main contribution of this paper lies in the extension towards group lasso of a Mal-
lows’ Cp-like information criterion used in finetuning the lasso selection in a high-dimensional,
sparse regression model. The optimisation of an information criterion paired with an `1-
norm regularisation method of the lasso leads to an overestimation of the model size. This
is because the shrinkage following from the `1 regularisation is too permissive towards false
positives, since shrinkage reduces the effects of false positives. The problem does not arise
with `0-norm regularisation but this is a combinatorial problem, which is computationally un-
feasible in the high-dimensional setting. The strategy adopted in this paper is to select the
non-zero variables with `1 method and estimate their values with the `0, meaning that lasso
is used for selection, followed by an orthogonal projection, i.e., debiasing after selection.
This approach necessitates the information criterion to be adapted, in particular, by includ-
ing what is called a “mirror correction”, leading to smaller models. A second contribution of
the paper is situated at the methodological level, more precisely in the development of the
corrected information criterion using random hard thresholds as a model for the selection
process.
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1 Introduction

In high-dimensional linear regression, where the number of candidate explanatory variables is
much larger than the number of observations, the assumption of sparsity is often adopted in
the selection of a subset from the candidates for use in subsequent estimation and inference.
Simple selection algorithms, such as alternating forward selection and backward elimination
become computationally unfeasible in a high-dimensional setting, while offering no guarantee
that the outcome is even near to being globally optimal in whatever sense. More advanced
algorithms formulate variable selection as a regularised least squares problem, which is equiv-
alent to a constraint minimisation of the sum of the squared residuals over all possible subsets
of candidate explanatory variables. Taking the size of the selected subset as constraint leads
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to a best k-term orthogonal projection which is combinatorially complex, and hence computa-
tionally unfeasible. Instead of the size of the subset, the lasso [26] takes the absolute sum of
the estimated values in the selected subset, leading to a convex quadratic optimisation prob-
lem, for which many direct and iterative solvers exist, including least angle regression (LARS)
[10], interactive soft thresholding [6], and coordinate descent procedures [13, 15]. Furthermore,
lasso is variable selection consistent [35, 28, 23], at least under certain conditions, the most
important of which amount to stating that the values in the least false model are large enough
to be detected. The least false model in this context is the orthogonal projection of the true
model (or data generating process, DGP) onto the full or maximal linear model, i.e., the model
including all the candidate covariates. Moreover, under the assumption of sparsity and with the
right choice of the absolute sum in the constraint, the convex, fast lasso selection mimics the
selection by the combinatorial best k orthogonal projection [8].

The topic of this paper lies one step further, at the finetuning of the selection procedure,
choosing an appropriate value of k. The choice of k is assessed by the distance between the
selected model and the DGP. This distance is measured, for instance, by the Kullback-Leibler
(KL) divergence, which amounts to the expected log-likelihood of the selected model under the
DGP. The KL divergence is estimated by Akaike’s Information Criterion (AIC) [1]. This paper
concentrates on the Prediction Error (PE) as distance measure and the corresponding Mallows’
Cp [22] as information criterion.

At the level of finetuning the variable selection, lasso and the best k orthogonal projection
are not at all equivalent. This follows from the lasso selection including a shrinkage estimation
instead of a least squares projection. Shrinkage reduces the effect of falsely selected covari-
ates on the prediction error, echoing Stein’s phenomenon [24] that the variance reduction by
shrinkage may exceed the introduced bias. Whereas shrinkage may prove beneficial on a fixed
selection, finetuning over the size of the selection induces an unpleasant effect. Indeed, by
tempering the effect of false positive selections on the prediction error, any method involving
shrinkage becomes more tolerant to the presence of these false positives. As a result, the ap-
plication of shrinkage pushes the minimum of the prediction error curve towards larger models,
leading to many false positives.

Alternatives to lasso with concave regularisation, such as SCAD [11], and MCP [33], re-
duce the shrinkage bias and the tolerance towards false positives, but not completely. The
overestimation of the model size can also be remedied by adding data-adaptive weights in the
`1 regularisation, leading to the adaptive lasso [36]. The definition of the weights requires the
availability of a prototype estimator, which should be

?
n consistent for proper working of the

procedure. This is the case, for instance, in low dimensional problems where the ordinary least
squares solution can be used as prototype.

This paper takes a different approach, following earlier work [17], where the information
criterion itself is redeveloped, anticipating for the numerous false positives that may otherwise
occur in a high dimensional setting. Lasso is used as a selection algorithm only. The assess-
ment of the lasso selection in the finetuning replaces the shrinkage estimator by a debiased
[19] estimator, obtained by least squares projection onto the selected set of covariates. This
decoupling of selection and estimation leads to refined information criteria [17]. It comes as
no surprise that without the tempering effect of shrinkage, the compromise between false neg-
atives and false positives, and between bias and variance in the prediction, becomes more
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delicate, in the sense that small deviations from the optimum may see already substantial in-
crease in either bias or variance.

This could be one of the reasons for working with a unilateral focus on false positives, such
as False Discovery Rate control [3] or Knockoffs [12]. Other arguments for a unilateral approach
may be application driven. In general, with the refined information criteria as in [17] taking away
most of the false positives, information criteria are an interesting choice in applications where
both false positives and false negatives are to be avoided. The choice among information
criteria can be driven by further compromises, such the compromise between the efficiency of
AIC and the consistency of BIC [4], which turn out to be somehow contradictory [30].

The main contribution of this paper consists in the extension of the proposed refined infor-
mation criteria for use in structured lasso selection. Structure based variable selection methods
include the fused lasso [25], the graphical lasso [14] and the composite absolute penalties [34]
including the group lasso [32]. Just as in the unstructured case, the adaptive group lasso [29],
group SCAD and group MCP [16] provide alternatives to the group lasso in some applications.
Other alternatives, in different setups, include two steps procedures for least squares estima-
tion after model selection [2] and recent bootstrap methods in high dimensional lasso [5]. As a
second contribution, this paper proposes a novel methodology in the development of the refined
information criteria, for use in finetuning structured or unstructured, lasso or other selection rou-
tines. More precisely, refined information criteria are found through the introduction of random
thresholds on the covariate values, thus modelling the selection process, as explained further
below.

The paper is organised as follows. Section 2, explains how to refine Mallows’ Cp, anticipat-
ing for the false positives during its optimisation. Although the same methodology applies to
other information criteria, such as AIC [17], this paper concentrates on Mallows’ Cp for a couple
of reasons. First, Mallows’ Cp has been adopted as a stopping rule in the LARS procedure.
Second, it is closely connected to Stein Unbiased Risk Estimator (SURE) [9], used in sparse
wavelet coefficient selection. Third, the redeveloped expression of Mallows’ Cp remains fairly
simple Finally, Mallows’ Cp can be linked to Generalised Cross Validation (GCV) [18], which
includes an implicit variance estimation. Our main result, presented in Proposition 3.2 in Sec-
tion 3, provides a workable approximation of the refined Mallows’ Cp criterion in a setting of
structured signal-plus-noise models. This approximation is further developed for the special
case of grouped variables in Section 4. Section 6 provides some simulations and, in Section
7, we compare the efficiency of Mallows’ Cp and its bias-corrected version for image denoising
using unstructured and group settings.

2 The mirror effect

2.1 The regression model

Consider the regression model with non-random design X,

Y “ µ` ε “ Xβ ` σZ, (1)
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where Z is a n-vector of standardised, independent and identically distributed errors with
varpZiq “ 1 for i “ 1, . . . , n. The nuisance parameter σ is assumed to be known or easy to
estimate. In the case of identical design X “ I (signal-plus-noise model), the estimation of σ is
straightforward — provided that because of the sparsity most components of β are (near-)zero
— from the median absolute deviation or interquartile range. In the general case, an implicit
variance estimator may be provided by generalised cross validation [18, Section 5.3], whose
expression can be seen as a variant of the Mallows’ Cp criterion adopted in this paper. The
design matrix X has size n ˆ m with n possibly smaller than m (high-dimensional data) but
we assume that the unknown number n1 of non-zeros in β is smaller than n. Furthermore, we
impose that β P Am where Am Ă IRm may be used to model structure amongst the variables.
For instance, the variables can belong to groups, or have the form a of tree, or be part of a
graphical model. The objective is to find the value k and the corresponding estimator pβk with k
non-zeros minimising the expected average squared prediction error PEppβq “ 1

nE
`

}pµ´ µ}22
˘

,

where the prediction is given by pµ “ Xpβk. It should be noted here that n1 represents the true,
unknown, theoretic number of nonzeros in the sparse covariate vector β, while k represents
the user-defined size of the selected model. Finetuning k is the topic of the next section.

2.2 Best k selection and mirror effect

Let Sk be the active set, i.e., the set of integers in t1, 2, . . . ,mu corresponding to the k non-
zeros in pβk. The notation XSk is used for the n ˆ k submatrix of X containing the k columns
corresponding to the 1s in Sk. For a given k, the selection Sk is provided by a procedure
SXpY ; kq, which can be the unstructured best k selection, or any structured procedure. An
example of such a procedure could be an implementation of the lasso regularised least squares
problem

min
β
}Y ´Xβ}22 ` 2λ}β}1. (2)

In this expression, the regularisation parameter λ is finetuned to the sample dependent value
pλk defined by the supremum of all values λ leading to an outcome pβk with k non-zeros. We
investigate the quality of the least squares projection pβSk “ pX

T
Sk

XSkq
´1XT

Sk
Y , assuming that

XSk is non-singular. Let Ok be the selection (i.e., a k-tuple of integers in t1, 2, . . . ,mu) found
by an oracle knowing µ without noise, using the same procedure as for Sk, i.e. Ok “ SXpµ; kq.
Then the least squares projection pβOk “ pXT

Ok
XOkq

´1XT
Ok
Y depends on the observations

through Y , but not through Ok. As the selection Ok does not depend on ε, the prediction error
PEppβOkq is estimated unbiasedly by the non-studentised version of the Mallows’ Cp criterion
∆pppβOkq. For a general selection S (here S “ Ok), the non-studentised Mallows’ Cp criterion
is given by

∆pppβSq “
1

n

›

›

›
Y ´XS

pβS

›

›

›

2

2
`

2|S|

n
σ2 ´ σ2. (3)

For nearly any procedure SXpY ; kq, the selection Sk depends on the observations with
noise. It is explained below that the least squares estimator pβSk on the selection Sk the ex-
pectation of ∆pppβSkq in (3) is no longer PEppβSkq. In particular, when the selection Sk follows
from minimisation of the information criterion (3), then, under mild conditions detailed in [17],
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the prediction error of the oracular selection lies halfway between the true prediction error and
the expected value of the information criterion, i.e.,

PEppβSkq ´ PEppβOkq “ PEppβOkq ´ E∆pppβSkq ` o
´

PEppβSkq
¯

. (4)

The oracle thus behaves as a “mirror” between the true prediction error and the apparent pre-
diction error provided by the information criterion.

An intuitive explanation for the bias in ∆pppβSkq is the following. When k is small, the se-
lection Ok and Sk will roughly contain the same highly significant variables. By the time k is
larger than the true model size n1, most of the n1 non-zero variables will be part of the selec-
tion. Roughly Opk´ n1q covariates are chosen to further minimise the residual sum of squares
}Y ´XSk

pβSk}
2
2. The selection thus contains false positives that best fit the noise. While the op-

timisation is meant to best fit the true data, the false positives tend to be those that are furthest
away from their true value, which is (near) zero. Choosing the false positives at random would
have introduced less noise. Since the selected false positives present themselves as better
than a random selection for fitting the response, the Cp finetuning (3) with the mere model size
as penalty tends to include them in the minimum Cp selection. As discussed in the introduction,
shrinkage estimation would reduce the impact of the false positives on the prediction, however
without taking away the false positives from the selection. This appearance versus reality effect
can be related to the fact that the optimisation process over random variables ∆pppβSq affects
the statistics of the selected variables while, for a selection O from an error free oracle, these
statistics are left unchanged. It turns out [17] that the oracular curve PEppβOkq can be used as
a mirror reflecting PEppβSkq onto ∆pppβSkq.

In the remainder of this paper, S will be associated with a selection size k so we can drop its
superscript. We also define pµk “ XS

pβS and note the Mallows’ Cp criterion and the prediction
error as ∆pppµkq and PEppµkq respectively.

2.3 The mirror and degrees of freedom

The effect of false positives on the optimisation of an information criterion can be formalised
through the notion of degrees of freedom. Defining the residual vector ek “ Y ´ pµk, the
generalised degrees of freedom [31] are given by

νk “
1

σ2
E
“

εT pε´ ekq
‰

“
1

σ2
E
`

εT pµk
˘

.

Straightforward calculations then show that when σ2 is known and an expression for νk can be
developed, then

Λpppµkq “
1

n
}Y ´ pµk}

2
2 `

2νk
n
σ2 ´ σ2 (5)

is an unbiased estimate of PEppµkq for any choice of the selection S, random or non-random,
the degrees of freedom νk absorbing any effect of the selection procedure.

Comparison of (3) and (5) reveals that both expressions are identical if νk “ |S| “ k. If the
orthogonal projection pµk “ PSY where PS “ XSpX

T
SXSq

´1XT
S is adopted in the setting of
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a given, fixed model S, as an estimator of the response µ “ Xβ, then it is straightforward to
verify that indeed νk “ k. If, however, S depends on the sample, as in the case of a variable
selection procedure, then the offset between the unbiased estimator of the prediction error in
(5) and the Cp criterion in (3) is given by 2pνk ´ kqσ

2{n, which is, as seen in (4), approximately
twice the offset with respect to the oracular prediction error.

The offset comes from the false positives in the selection, which have been chosen to best fit
the errors. Reducing the impact of false positives, the shrinkage in the lasso estimator provides
an exact compensation of the offset, both in the low dimensional [37] as in the high dimensional
[27] case. Compensating the offset in degrees of freedom or in prediction error, shrinkage does
not resolve the false positive selections themselves.

Under sparsity assumptions, detailed in [17], the expression of the degrees of freedom in
least squares projection after selection can be approximated by

νk “
1

σ2
E
”

}PSε}
2
2

ı

` o rPEppµkqs as nÑ8, (6)

which reflects exactly the essence of the mirror effect: the offset νk ´ k is due to the interaction
between the noise ε and the estimator PS within the sample dependent selection S. The
approximation motivates the formal definition of the mirror,

mk “
1

n
E
”

}PSε}
2
2 ;β

ı

´
k

n
σ2. (7)

This expression explicitly writes the parametric dependence on β. From (6) it follows that
mk “

1
npνk ´ kqσ2 ` o rPE ppµkqs . Calculation, if at all possible, or otherwise estimation or

approximation of mk leads to a workable information criterion, starting from (5), which becomes

Λpppµkq “
1

n
}Y ´ pµk}

2
2 `

2k

n
σ2 ` 2mk ´ σ

2, (8)

In (8), mk is the exact correction term, an approximation rmk or an estimator pmk, of which the
following sections provide a couple of concrete cases.

3 The mirror effect in structured signal-plus-noise models

This section concentrates on the simple signal-plus-noise model. It will construct in Proposition
3.2 an approximation for the mirror mk based on observable quantities.

3.1 The model and assumptions

Consider the signal-plus-noise model Y “ µ`ε “ β`σZ, that is Model (1) where X “ I. The
least squares estimator pµk on the active set Sk is given by i P Sk ñ pµk,i “ Yi. We assume

(A1) Z is independent and identically distributed with zero mean.
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(A2) The density of the noise σZ is unimodal and symmetric around its (zero) mean. The
density fZ has a bounded derivative and fZptq “ opt´4q for t Ñ ˘8. This assumption
means that the tails of the noise distribution are not too heavy. This is because heavy
tails induce outliers mixing up with the true significant peaks in µ.

(A3) Asymptotic sparsity: the data should be sparse. The precise formulation of this as-
sumption is postponed until few additional notions have been introduced (see Section 3.3).

For the (structured) selection procedure SXpY ; kq with given k, we assume

(A4) the selection of component i depends on the absolute value |Yi| “ |µi ` εi| only, not on
its sign. Moreover, we assume that if the value |yi| in a given context Y is large enough
to be selected, then any value above |yi| would also be selected in that context.

3.2 Writing the selection event in terms of a random threshold

The rationale behind Assumption (A4) is the following. In an individual variable selection pro-
cedure, a threshold on a coefficient’s magnitude decides whether that coefficient is in or out.
Although in a group selection, the individual magnitude of a coefficient is no longer enough to
decide, it makes sense to impose at least that if a coefficient has been selected, along with
other members of its group, it would also be selected if its magnitude were larger, the other
members remaining unchanged. Conversely, if a coefficient is not selected, then it would re-
main inactive if its magnitude were diminished, keeping values of the other members of its
group.

As a result of Assumption (A4), the selection of component i can be written as the indicator
function of a random set evaluated in the observation Yi, so that

P pi P S;µq “ P
´

IrTk,i,8qp|Yi|q “ 1
¯

“ P p|Yi| ě Tk,iq,

with Tk,i a positive random variable. In some routines, the closed boundary at Tk,i and the
inequality should be replaced by an open boundary and a strict inequality, however without
any impact on the subsequent discussion. The random set, rTk,i,8q, depends on a random
threshold Tk,i. The randomness of Tk,i is due to its dependence on the other observations Yi1
with i1 ‰ i. This dependence may follow from the grouping in a structured selection, but also
from the ordering of the absolute values in simple non-structured approach.

In a similar way, we can write

Epε2i |i P Sk;µq “ E
`

ε2i
ˇ

ˇ|Yi| ě Tk,i
˘

.

Denote by Ipx P Aq the indicator function of the set A, meaning that Ipx P Aq “ 1 if x P A
and Ipx P Aq “ 0 otherwise. Then, in the signal-plus-noise model, the norm of the projection in
(7) is given by }PSε}22 “

řn
i“1 ε

2
i Ipi P Sq Conditioning on Tk,i leads to

mk “
1

n

n
ÿ

i“1

Epε2i Ipi P Sq;µq ´
k

n
σ2 “

1

n

n
ÿ

i“1

E
“

pε2i ´ σ
2qIpi P Sq;µ

‰
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“
1

n

n
ÿ

i“1

ż 8

0
E
“

pε2i ´ σ
2qIpi P Sq

ˇ

ˇTk,i “ t;µ
‰

fTk,iptqdt

“
1

n

n
ÿ

i“1

ż 8

0
E
“

pε2i ´ σ
2qIpi P Sq

ˇ

ˇTk,i “ t;µi
‰

fTk,iptqdt.

In this expression we used the fact that, given the threshold, the selection of Yi, i.e., i P S
depends parametrically on the value µi, not on the other components in µ. This follows from
Assumption (A4), which states that the selection of Yi depends on its absolute value exceeding
a threshold fixed by the other components in Y . After observation of the threshold, the values
of the other components have no further influence on the selection.

The expression can be further developed by writing

mk “
1

n

n
ÿ

i“1

E rhpTk,i;µiqs “
1

n

n
ÿ

i“1

ż 8

0
hpt;µiqfTk,iptqdt,

where

hpt;µiq “ E
“

pε2i ´ σ
2qIpi P Sq

ˇ

ˇTk,i “ t;µi
‰

“

ż 8

´8

pu2 ´ σ2qIp|µi ` u| ě tqfεpuqdu

“

ż 8

´8

pu2 ´ σ2qIpu ď ´t´ µi or u ě t´ µiqfεpuqdu

Defining Gεpxq “
şx
´8
pu2 ´ σ2qfεpuqdu, for which the limits in ˘8 are zero, and using the

symmetry of fεpuq for Gεp´xq “ ´Gεpxq, we can write

hpt;µiq “ Gεp8q ´Gεpt´ µiq `Gεpt´ µiq ´Gεp´8q “ ´Gεpt´ µiq ´Gεpt` µiq, (9)

and from there

mk “
1

n

n
ÿ

i“1

E r´GεpTk,i ´ µiq ´GεpTk,i ` µiqs . (10)

This expression still depends on the unknown µi. Section 3.4 will develop an approximation of
(10). For this approximation, we rely on the assumption of sparsity (A3), detailed in Section 3.3.

3.3 Formal assumption on asymptotic sparsity

Now we are at the point where we can formalise the Assumption (A3) on asymptotic sparsity.
For this, we need to consider n to grow to 8. With growing n, the distributions of the random
thresholds Tk,i and the values of the components in µ evolve. In order to avoid overloaded
notations, the dependence on n in Tk,i and µ is not made explicitly in the formulation of the
assumptions or throughout the proof.

By way of standardisation, let σ be independent from the sample size n. We impose that
the signal-to-noise ratio remains approximately constant, meaning that there exist positive con-
stants c and C, not depending on n, so that

c ď
1

n

n
ÿ

i“1

µ2i ď C.
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As n grows, the vector µ is assumed to become sparser, concentrating the information in a
small (of opnq, that is) number of significant components, thus allowing the procedure to perform
a precise selection under optimal or near-optimal value of k. This means that the non-selected
parameters in β do not carry much of the information. In the ideal case, the non-selected values
are all zero. Otherwise the omission of these values is supposed not to dominate the prediction
error. For the proof of the forthcoming proposition, we will need a slightly stricter version, in the
sense that also true values a bit above the threshold should not dominate the prediction error.
More precisely, we impose that

1

n

n
ÿ

i“1

µ2iP p|µi| ă 2Tk,iq “ o rPEppµkqs . (11)

This corresponds approximately to Assumption 2 in [17]. At the same time, we assume that the
random thresholds tend (slowly) to infinity as n grows larger, more precisely

lim
nÑ8

max
1ďiďn

E

ˆ

1

Tk,i

˙

“ 0. (12)

Assumptions (12) and (11) are somehow contradictory, in the sense that (12) expresses an
increasingly strict condition for a parameter to be selected, while (11) imposes that the not se-
lected parameters represent a decreasingly relative contribution to the squared bias. Together,
these conditions are met by data where the information is more and more concentrated in a
limited number of large components, when n tends to 8.

Concrete examples of sparse vectors µ satisfying the assumptions can be constructed in
`p balls with p ă 2. A prototype concerns a vector of length n of which a small proportion,
typically n1 “ Oplogpnqq is non-zero. The non-zeros are supposed to be normalised in `2 in
the sense that }µ}22{n “ 1. Assuming additive, normal, independent errors ε, the thresholds
in this simple setup can be taken to have the universal (i.e., data-independent) value Tk,i “
a

2 logpnqσ, for which a classical result in extreme value theory [7, 20] states that asymptotically

all false positives are eliminated, more precisely limnÑ8 P
´

maxi“1,...,n |εi| ą
a

2 logpnqσ
¯

“ 0.

The threshold satisfies (12). On the other hand, the threshold grows slower than the non-
zero values, whose root mean squared value is of the order }µ}22{ logpnq “ n{logpnq, thus
trivially satisfying (11). More realistic examples beyond the prototype can be constructed by
the introduction of an index of sparsity generalising the abrupt transition between n1 zeros and
n ´ n1 non-zeros. Construct an invertible, non-decreasing, positive function µnpxq on r0, 1s so
that the ordered elements of µ are found as µnpi{nq for i “ 1, . . . , n, then the index of sparsity
(or concentration) can be defined as the value x1pnq so that

ż 1´x1pnq

0
µ2npxqdx “ x1pnq.

Then, as developed in the supplementary material, Section 5, for [17], the concentration index
x1pnq Ñ 0 as n Ñ 8 can be analysed to provide a framework in which the conditions can be
satisfied. On the other hand, `p-balls with sufficiently small radii provide the right, small enough,
values of the concentration index.
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3.4 Definition and asymptotic behaviour of the approximation

At this point, we introduce an approximation for the mirror function.

Definition 3.1

rmk “
1

n

n
ÿ

i“1

E
”

pε2i ´ σ
2qIpi P Sq;µr´is

ı

“
1

n

n
ÿ

i“1

P pi P S;µr´isq
”

Epε2i |i P S;µr´isq ´ σ2
ı

,

where µr´is is the vector obtained by replacing µi in µ by zero.

Using the notations in (9), this becomes

rmk “
1

n

n
ÿ

i“1

E r´2GεpTk,iqs .

Then, for this approximation, we have the following result stating that replacing µ by 0 in ex-
pression (10) lets rmk perform asymptotically as well as mk. This way, we can construct the
mirror based on observable quantities, without knowing the distribution of µ.

Proposition 3.2 (main result) Under the aforementioned assumptions, it holds that for nÑ8

|rmk ´mk| “ o rPEppµkqs .

The proof is given in Appendix A.

Corollary 3.3 Define the information criterion

rΛpppµkq “
1

n
}Y ´ pµk}

2
2 `

2k

n
σ2 ` 2rmk ´ σ

2. (13)

Let rk be the model size that minimises ErΛpppµkq and let k˚ minimise EΛpppµkq “ PEppµkq. Then
it holds that

PEppµ
rk
q

PEppµk˚q
Ñ 1. (14)

In other words, replacing mk by rmk may lead to different selections, even asymptotically, but
these selections attain the same balance between false negatives and false positives in terms
of prediction error. Proof. Denoting

rρk “
|rmk ´mk|

PEppµkq
“

ˇ

ˇ

ˇ
ErΛpppµkq ´ PEppµkq

ˇ

ˇ

ˇ

PEppµkq
,

we have p1´ rρkqPEppµkq ď ErΛpppµkq ď p1` rρkqPEppµkq, and so

p1´ rρ
rk
qPEppµ

rk
q ď ErΛpppµ

rk
q ď ErΛpppµk˚q ď p1` rρk˚qPEppµk˚q.
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Together with the fact that PEppµk˚q ď PEppµ
rk
q this leads to

1 ď
PEppµ

rk
q

PEppµk˚q
ď

1` rρk˚

1´ rρ
rk

.

By Proposition 3.2, rρk “ op1q, thus completing the proof. l

Provided that the values of the thresholds Tk,i can be computed from the sample responses,
the approximative mirror is estimated unbiasedly by its empirical counterpart,

pmk “
´2

n

n
ÿ

i“1

GεpTk,iq, (15)

leading to an estimator of the degrees of freedom pνk “ k ` n pmk
σ2 and a modified Mallows’

Cp criterion as in (13). The approach with the random thresholds will be further developed in
Sections 4 and 5 for group lasso selection.

3.5 Estimating the variance

The information criterion (13) assumes knowledge or selection-independent estimation of the
variance. In the sparse signal-plus-noise model, such an estimation is provided by the median
absolute deviation,

MADpY q “ median r|Yi ´medianpY qs .

Based on the statistics of the error vector ε, one can construct a variance estimator. In the case
of normal errors, for instance, a well known estimator is given by

pσ “ MADpY q ¨ Φ´1p3{4q “ 0.6745 ¨MADpY q,

where Φpxq denotes the standard normal CDF. In the linear model beyond the signal-plus-
noise case, discussed in further detail in Section 5, a possible strategy to estimate σ2 is to work
with a pilot estimator of β using the lasso, including the shrinkage, and with generalised cross
validation [18] as a information criterion instead of Mallows’ Cp. This approach does not rely on
an explicit variance estimation. Although the resulting pilot estimator has many false positives,
its residual vector may serve in a variance estimator.

4 Correction in signal-plus-noise models with group structure

In this section, we develop the approximation rmk for the case of group-structured selection.

4.1 Group selection

Let µ be a sparse vector of groups of variables. The key property for group selection is that all
variables from a same group should become non-zeros (or zeros) simultaneously. Considering
group lasso as our selection procedure, it is worth noting that the largest groups are more likely
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to be included in the model compared to groups of smaller sizes. In their original proposal [32],
Yuan and Lin recommended penalising the groups according to their size. In order to simplify
calculations, we consider only groups of the same size w. In that case, each group has the
same probability of being selected. The number of variables is then equal to n “ r ˆ w, with
r the number of groups and we can write µ as the vector of groups pµjqj“1,...,r. Consequently,
we have pYjqj“1,...,r “ pµjqj“1,...,r ` pεjqj“1,...,r.

To stay consistent with the previous notations, we define l as the number of selected groups
so that lˆw “ k is the number of variables included in the model, corresponding to the selection
S. We find the least squares estimator for a group of variables from Sj “ 1j ô pµk,j “ Yj ,
where Sj and pµk,j are the jth groups from S and pµk respectively. The best l group selection,
measured by the Cp-value, consists of the l groups from Y whose `2-norms are the largest.
This means that the threshold selecting l groups in a group lasso procedure is the pr ´ lqth
order statistic of the group norms of Y , that is pλl “ pp}Yj}2qj“1,...,rqpr´lq.

4.2 Approximation of the mirror effect with group structure

Considering Definition 3.1 for the approximation of the mirror effect (Proposition 3.2), we find in
the setting of group selection

rml “
1

n

n
ÿ

i“1

P pi P S;µr´isq
”

Epε2i |i P S;µr´isq ´ σ2
ı

“
σ2

r

r
ÿ

j“1

P pSj “ 1j ;µ
r´jsq

”

Epw´1
›

›εjσ
´1
›

›

2

2
|Sj “ 1j ;µ

r´jsq ´ 1
ı

, (16)

where µr´js is the vector obtained by replacing µj in µ by zeros.
Following the approach from Section 3.2, the selection of the jth group can be expressed

as P pSj “ 1j ;µq “ P p}Yj}2 ě Tl,jq and, similarly,

Epw´1
›

›εjσ
´1
›

›

2

2
|Sj “ 1j ;µq “ Epw´1

›

›εjσ
´1
›

›

2

2
| }Yj}2 ě Tl,jq,

where Tl,j is a random threshold whose randomness comes from the ordering of the group
norms, thus inducing dependence on the other groups Yj1 with j1 ‰ j. Given µr´js, we can
then write (16) as

rml “
σ2

r

r
ÿ

j“1

P p}εj}2 ě Tl,jq

„

E

ˆ

1

w
}εj{σ}

2
2

ˇ

ˇ

ˇ

ˇ

}εj}2 ě Tl,j

˙

´ 1



“
σ2

r

r
ÿ

j“1

P

˜

}εj{σ}
2
2 ě

T 2
l,j

σ2

¸«

E

˜

1

w
}εj{σ}

2
2

ˇ

ˇ

ˇ

ˇ

ˇ

}εj{σ}
2
2 ě

T 2
l,j

σ2

¸

´ 1

ff

“
σ2

r

r
ÿ

j“1

E

˜

ż 8

T 2
l,j
{σ2

´ u

w
´ 1

¯

f
}εj{σ}

2
2
puqdu

¸

.

In practice, the regularisation parameter of the group lasso procedure acting as empirical
threshold, Tl,j “ pλl, the approximated correction term rml in the selection of l groups of variables
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is estimated unbiasedly by

pml “ σ2
ż 8

pλ2
l
{σ2

puw´1 ´ 1qf
}εj{σ}

2
2
puqdu.

This estimator can be plugged in into the modified information criterion of (13).

4.3 Signal-plus-noise model with Gaussian errors

Let ε be a n-vector of independent and identically distributed errors such that ε „ N p0, σ2q. For
a group of errors εj ,

›

›εjσ
´1
›

›

2

2
„ χ2

w where χ2
w is a Chi-squared distribution with w degrees of

freedom. Given the fact that
ş8

0 puw
´1 ´ 1qfχ2

w
puqdu “ 0, the mirror effect reduces to

rml “
σ2

r

r
ÿ

j“1

E

˜

ż T 2
l,j{σ

2

0
p1´ uw´1qfχ2

w
puqdu

¸

“
σ2

r

r
ÿ

j“1

E
´

Fχ2
w
pT 2
l,j{σ

2q ´ Fχ2
w`2
pT 2
l,j{σ

2q

¯

(17)

with Fχ2
w

and fχ2
w

the cumulative distribution function and density of the χ2
w distribution. When

the group size w is 1 (singletons), Equation (17) reduces to the result found in [17]. Indeed,

rmk “ rml “
σ2

r

r
ÿ

j“1

E
´

Fχ2
1
pT 2
l,j{σ

2q ´ Fχ2
3
pT 2
l,j{σ

2q

¯

“ 2σ2n´1
n
ÿ

i“1

E pTk,iφσpTk,iqq (18)

φσ being the density of a zero-mean normal random variable with variance σ2. Details for
Equations (17) and (18) are given in Appendix B.

From Equation (17), we can see that, as the group size increases, Fχ2
w

and Fχ2
w`2

get closer,
hence the mirror effect becomes smaller.

5 The mirror correction beyond the signal-plus-noise setting

When the design matrix in the regression model of (1) is not square and orthogonal, the problem
cannot be transformed into a signal-plus-noise model. Although the full theoretical treatment of
this general case lies beyond the scope of this paper, it is possible to find an expression for the
mirror correction.

First of all, Assumption (A4) needs to be reformulated.

(A4ext) Given the binary vector Sr´js containing all but the jth component of S, we suppose that

Sj “ 1 ô
ˇ

ˇ

ˇ
XT
j pY ´XrS´js

pβrS´jsq
ˇ

ˇ

ˇ
ě TS,j , (19)
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whereXj is the jth column of the design matrix X, and pβrS´js is the estimator de-
fined by the selection in Sr´js and Sj “ 0. The random threshold TS,j is a function of
ˇ

ˇ

ˇ
XT
l pY ´XrS´js

pβrS´jsq
ˇ

ˇ

ˇ
, for all l ‰ j.

The reasoning behind this assumption is that a component in S is active if the inner product of
Xj with the residual of the estimator without that component is larger than a random threshold.
In other words, if a component j is selected, then it would also be selected if the absolute inner
product in (19) were larger, keeping the other inner products fixed. The inner product in (19)
measures how much of the residual could be explained by the jth covariate.

As the mirror effect concerns the prediction error of least squares projections onto the se-
lection S, we have XS

pβS “ PSY , with PS the orthogonal projection matrix as in (6). Thanks
to the orthogonality, we have }PSY }22 “

›

›PrS´jsY
›

›

2

2
`
›

›pPS ´PrS´jsqY
›

›

2

2
, and furthermore

XT
j pY ´XrS´js

pβrS´jsq “X
T
j pXS

pβS ´XrS´js
pβrS´jsq “X

T
j ppPS ´PrS´jsqY q.

As a consequence, the assumption in (19) amounts to
›

›pPS ´PrS´jsqY
›

›

2
ě T 1S,j ,

where
T 1S,j “ TS,j{

“›

›XT
j

›

› cospαjq
‰

,

and αj the angle between the vector Xj and the hyperplane XrS´js.
Let Sl, l “ 0, 1, . . . , k be a sequence of nested models with Sk “ S, then

E
”

}PSε}
2
2

ı

“

k
ÿ

l“1

E
”

}pPSl ´PSl´1qε}22

ı

.

If the nested models were fixed independently from the observations, then in a normal, ho-
moscedastic model, all values }pPSl ´PSl´1qε}22 would be independent χ2

1 distributed, just like
in the orthogonal or identical design case. Denoting ∆l “ PSl ´ PSl´1 , the mirror effect be-
comes

mk “
1

n

k
ÿ

l“1

E
”

}∆lε}
2
2

ı

´
k

n
σ2.

A first step in finding an estimator of mk consists of conditioning the expected value on the
observed outcome of the variable selection, S. The result is a random variable, depending on
S and on the unobserved noise ε, making it as such unsuitable as estimator,

qmk “
1

n
E
”

}PSε}
2
2

ˇ

ˇ

ˇ
S;β

ı

´
k

n
σ2. (20)

“
1

n

k
ÿ

l“1

E
”

}∆lε}
2
2

ˇ

ˇ

ˇ
Sk;β

ı

´
k

n
σ2

“
1

n

k
ÿ

l“1

E
”

}∆lε}
2
2

ˇ

ˇ

ˇ
Sk; }∆lpµ` εq}2 ě T 1Sk,l

ı

´
k

n
σ2.
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The last line should be read as conditioning the square of a noise component on the event that
the component with response ∆lµ exceeds a threshold. The value of that threshold, a priori
random, is fixed by the observation of the selection Sk. As a result, the general design case
reduces to the same framework as the signal-plus-noise case. Further development of the
general case involves the use of the sparsity of ∆lµ in a way similar to the sparsity of µ in the
signal-plus-noise case. A second issue is the value of T 1Sk,l. In the signal-plus-noise case, the
thresholds are the same as the thresholds adopted in the lasso or group lasso estimators. In
the case of orthogonal projection estimators, the value of threshold T 1Sk,k for the newly added
covariate Sk is given by the value of }∆kY }, as this is the value that activates the selection
of the covariate. In order to find the values of T 1Sk,l of previously activated covariates, l ă k
that is, we need to identify the value of }∆lY } so that the lth component, Sl, in Sk would be
deactivated. As finding the exact value would be computationally complex, approximations can
be constructed based on the actual value of the lasso parameter, pλk, the value pλl that activated
Sl, and the value T 1

Sl,l
“ }∆lY }:

pλk,l “ T 1Sl,l
pλk{pλl,

leading to the following estimator of the mirror effect

pmk «
1

n

k
ÿ

l“1

ż 8

pλk,l

pu2 ´ σ2qf∆lεpuqdu,

which can be plugged in into (13).

6 Illustration and simulation study

We generate r “ 200 groups containing w “ 10 coefficients µj so that µ “ pµjqj“1,...,r is a
n-dimensional vector with n “ rw. In the first instance, the simulation is designed to create
the perfect setting for group selection by imposing that all components of µj within group j are
either all zero or all non-zero. A fraction p “ 1{20 of the groups are non-zero, meaning that the
total number of non-zeros in µ equals exactly n1 “ pn “ prw “ 100. In the second instance, a
proportion q “ 1{5 of the n1 non-zeros is transferred to the groups of zeros, in exchange for the
same number of zeros, keeping the total number of non-zeros at n1. The objective is to identify
these n1 components and to estimate their values.

The non-zeros µ are distributed according to the zero inflated Laplace model fµ|µ‰0pµq “
pa{2q expp´a|µ|qwhere a “ 1{5. The observations then are pYjqj“1,...,r “ pµjqj“1,...,r`pεjqj“1,...,r,
where ε is a n-vector of independent, standard normal errors.

The simulation compares group selection using the criterion proposed in this paper with
unstructured and group selection using classical Mallows’ Cp.

Figure 1 has an illustration of the proposed variable selection on one sample of n “ 2000 ob-
servations, n1 “ 100 of which have a non-zero value in µ. Among these, p1´ qqn1 “ 80 appear
in groups, while the other qn1 “ 20 are isolated. The estimations of the mirror effect correc-
tions, plotted in Figure 1 (right), are calculated from equation (20) and their approximations
from equations (17) and (18) with the empirical thresholds taken as the ordered group norms
and the ordered absolute values of Y for group and unstructured selections respectively.
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Figure 1: (top) The gray and black solid lines represent the PE for unstructured and group se-
lections and the dashed lines represent their respective Mallows’ Cp in the signal-plus-noise
model. The black bullet line depicts the oracular mirror, PEppβOkq as in (4), for the group selec-
tion. The mirror for the unstructured selection is not depicted for the sake of clarity. It almost
coincides with the mirror for the group selection. (bottom) The mirror effects estimated with
Equation (20) for unstructured and group selections are plotted in gray and black solid lines
and their approximations from Equations (18) and (17) in gray and black dotted lines. The
samples size n equals 2000 in this case.

16



Unstructured (best k) Group selection
Cp Cp+corr. PE Cp Cp+corr PE

k

Q1 365 53 53 140 100 100
Q2 375 58 57 150 100 100
Q3 387 63 61 170 100 100
mean 375.327 58.448 57.263 155.66 102.65 100

PE

Q1 0.576 0.112 0.102 0.095 0.047 0.045
Q2 0.597 0.124 0.113 0.112 0.052 0.050
Q3 0.622 0.139 0.124 0.133 0.059 0.054
mean 0.599 0.126 0.113 0.114 0.054 0.050

FP

Q1 300 12 11 60 20 20
Q2 310 14 13 70 20 20
Q3 321.5 17 15 90 20 20
mean 310.734 14.687 13.168 75.052 22.625 20

FN

Q1 33 53 53 19 20 20
Q2 35 56 56 20 20 20
Q3 38 60 59 20 20 20
mean 35.407 56.239 55.905 19.392 19.975 20

Table 1: Results of simulation study for 1000 samples following in the same settings as the
illustration in Figure 1. Each sample has exactly n1 “ 100 non-zero values in the vector µ of
length n “ 2000. Among the n1 “ 100 non-zeros, qn1 “ 20 do not belong to a group, while
the groups of non-zeros actually contain qn1 “ 20 zero values in µ. The table lists the lower
quartile Q1, median Q2, upper quartile Q3 and mean values of four quantities, the selection
size k, the prediction error PE, the absolute number of false positives FP, and the number of
false negatives, FN. Selection is performed by simple minimisation of Cp, minimisation of Cp,
corrected as in [17], minimisation of the prediction error (as a benchmark), and with the same
three finetuning approaches applied to group selection. See text for a discussion of the results.

Figure 1 (left) plots the prediction error and Mallows’ Cp as functions of the model size for
unstructured and group selections. In each case, we observe that the PE and Cp curves are
reflexion of each other with respect to a mirror curve. It can be seen that the minimum PE in
the case of group selection is lower than the minimum PE in the case of unstructured selection.
That means that with 80% of the non-zero’s occurring in groups, it is beneficial to apply group
selection. Also, the selection size at the minimum is larger in the group selection. These
conclusions are confirmed in the simulation study of Table 1, summarising the results of 1000
samples. The fifth column in the table corresponds to the approach presented in this paper.
It shows a near-perfect balance between false negatives and false positives, with virtually in
every simulation run 20 false negatives and 20 false positives. This is the best that can be
expected from a procedure that selects components in groups. Isolated non-zeros cannot be
detected, while zeros within the group cannot be excluded, unless a post-processing is applied.
Simulations with a proportion q “ 0 of isolated non-zeros (not tabled here) have been run as
well, leading to zero false positives and zero false negatives in virtually all runs. Software
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reproducing these results is available.
The prediction error of the data driven corrected information criterion is not far from the

minimum prediction error in the sixth column (obtained by an oracle knowing for each candidate
model the exact prediction error). The simulation study also confirms the observation in Figure
1 that in the setting of this simulation, the group selection reduces the prediction error. In
particular, structuring the selection helps in finding less prominent non-zeros, at least when
they appear in a group, thus reducing the number of false negatives. In order to pick up some
of the remaining isolated non-zeros, a post-processing performing a sort of model averaging is
still to be investigated.

7 Application to image denoising

In this section, we compare the performance of unstructured and group selections for noise
reduction, using both Mallows’ Cp and its mirror-corrected counterpart as a quality rule. We
apply these methods to the MNIST dataset from [21], consisting of 28 ˆ 28 pixel greyscale
images of handwritten digits. The main idea here is that images of a same digit share common
features, hence we find a structure across these images. Sparse representations are obtained
by application of a Haar transform on the images. Writing the images with noise by Y “ µ`σZ,
the Haar basis acts as the design matrix X in the sparse regression model of (1), where β is the
vector of Haar coefficients. In this application, the forward Haar transform corresponds to X´1,
leading to the sparse signal-plus-noise model in the transformed domain X´1Y “ β`σX´1Z.
Using structured selection should therefore improve denoising. The technique could be used
with pictures from a surveillance camera where the background is fixed. This way, one could
detect changes such as unexpected objects in relatively limited areas of the pictures, or perhaps
recover the original background more precisely if the pictures are noisy. In the next paragraphs,
we describe the methodology for preparing the MNIST dataset and the selection procedure
before presenting our results.

7.1 Methodology

For a given digit, 10 corresponding images are randomly chosen from the training set of the
MNIST database. The values of the pixels are adjusted so that the images contain their values
in the range 0 (black) to 1 (white). The black background is extended with a 2-pixels border to
obtain 32 ˆ 32 pixel images. Finally a Gaussian white noise with variance 0.04 is added to the
images.

We apply simple Haar wavelets on each of the 10 noisy images and perform selection on
the detail coefficients. Both unstructured and group selections are estimated: as the images
are similar, it is reasonable to assume that if a detail is non-zero for one image, then the same
details from the other images should also be non-zeros, hence the grouping. Following this
idea, we get 32 ˆ 32 groups of 10 coefficients. The best models are found by optimising the
Mallows’ Cp criterion (3) and the mirror-corrected Cp using Equations (17) and (18), then we
recover the corresponding images which we compare to the original noise-free images.
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Table 2: Summary of average performances for the models optimising the PE, Mallows’ Cp and
mirror-corrected Cp in unstructured and group selections.

Unstructured selection Group selection
PE Cp Cp+2mk PE Cp Cp+2ml

Sum of residuals 0.0136 0.0268 0.0139 0.0113 0.0130 0.0115
# non-zeros details 591 2336 575 1459 2060 1480
# false positives 45 1291 43 388 782 404
# misspecified values 1527 2273 1537 1344 1532 1356
% true neg. recovery 99.45 84.28 99.48 95.28 90.47 95.08
% true pos. recovery 26.92 51.57 26.28 52.83 63.03 53.07

These steps are repeated 1000 times, which allows us to compute an average value of the
difference between noise-reduced images and their respective noise-free images.

7.2 Results

We choose to focus on images of the digit “7”. A summary of diverse results for the models
optimising the PE, Mallows’ Cp and mirror-corrected Cp in unstructured and group selections
is listed in Table 2. In both configurations, correcting the Mallows’ Cp criterion with the mir-
ror effect leads to models close to those one would get optimising the prediction error. Note
that the minimum prediction error serves as a benchmark in this comparison. Indeed, without
knowledge of the true underlying data, it cannot be computed exactly. Hence, the fact that the
mirror corrected Cp method comes close to the minimum prediction error method illustrates the
good performance of the method.

Amongst the 10240 details calculated from the 10 noise-free images, an average of 2027.6
are non-zeros. Under unstructured selection, the minimum mirror-corrected Cp model under-
estimates the true number of non-zero details: although it has the lowest number of false
positives, it also has a lower percentage of true positive recovery than the minimum PE and
minimum uncorrected Cp selections. The minimum uncorrected Cp model contains the largest
numbers of false positives and misspecified values (false positives and false negatives); this
can be partly explained by the overestimation of its model size.

Under group selection, we observe a similar behaviour but less extreme: in particular, the
best model using the mirror contains more false positives compared to the unstructured case,
but its percentage of true positive recovery is twice as large. In terms of sum of residuals, Mal-
lows’ Cp under unstructured selection performs poorly (0.02678), whereas the smallest error is
achieved using the corrected Cp under group selection (0.01150). The errors of unstructured
corrected Cp and group uncorrected Cp are 0.01385 and 0.01304 respectively.

A sample of 5 images from one iteration is available in Appendix C.
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Figure 2: Plot of p´1{nq
řn
i“1 hpt;µiq as a function of t, along with an approximation hpt; 0q.

8 Conclusion

In this paper, we presented a new approximation of the degrees of freedom for use in a Mal-
lows’ Cp driven group Lasso selection of sparse covariates in a high-dimensional model. The
approximation develops the so-called mirror effect, which compensates for the effect of false
positives on the optimisation of the information criterion. This does not mean that the proposed
method prevents all false positives from occuring. Indeed, it has been found that false positives
happen early on in the Lasso selection process [?]. On the other hand, the group structured
selection reduces the number of isolated false positives. The mirror correction on top of the
structured selection keeps the additional false positives due to the optimisation process under
control. The paper has found an explicit expression for the mirror correction in the setting of
group Lasso with additive, normal uncorrelated noise.

Appendices

A Proof of Proposition 3.2

Proof.
The key point in the proof is to realise that the largest contributions to the approximation

error come from the values in µ away from zero. Using the assumption of asymptotic sparsity,
these contributions become less and less important.

Defining

h̄pt;µq “
1

n

n
ÿ

i“1

hpt;µiq,
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Figure 3: Plots of hpt;µiq with in bold line, hpt; 0q.

we can write from (9),

mk ´ rmk “ E
“

h̄pTk,i;µq ´ h̄pTk,i; 0q
‰

“
1

n

n
ÿ

i“1

E rhpTk,i;µiq ´ hpTk,i; 0qs

“
1

n

n
ÿ

i“1

E r2GεpTk,iq ´GεpTk,i ´ µiq ´GεpTk,i ` µiqs .

The value of h̄pt;µq is depicted as a function of t in Figure 2. The individual contributions
hpt;µiq for a typical sparse signal are plotted in Figure 3.

We construct an upper bound for hpt;µq, consisting of three parts, depending on the value
of µ. First, we have a general upper bound

|hpt;µq ´ hpt; 0q| ď max
t
|2Gεptq ´Gεpt´ µq ´Gεpt` µq| ď 4 max

x
|Gεpxq| “ 4|Gεpσq|,

as indeed, on the positive axis, |Gεpxq| is unimodal with global maximum in x “ σ.

Remark A.1 The upper bound is pessimistic, since limtÑ8 |Gεptq| “ 0, so for every η ą 0,
there exists a t˚, so that for t ą t˚, we find 2|Gεptq ´ Gεpt ` µiq| ď |2Gεptq| ă 2η, and so
|2Gεptq ´Gεpt´ µiq ´Gεpt` µiq| ă 2|Gεpσq| ` 2η.

The second part of the upper bound is for small values of µ, as illustrated in Figure 4. Let
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Figure 4: In bold line, plots of hpt;µiq as a function of µi for two values of t. The dotted lines
represent the upper bounds.

M be a constant, a priori depending on t, so that for |µ| ď t´ σ, we have that

hpt;µq ´ hpt; 0q ď rM ´ hpt; 0qs ¨

„

µ

t´ σ

2

. (21)

This construction is possible since h1pt; 0q “ 0.

Remark A.2 Obviously, one can take rM ´ hpt; 0qs{pt ´ σq2 to be equal to maxxPIR 2|G2εpxq|,
but that choice would lead to a pessimistic upper bound when t grows larger. We will keep
2 maxxPIR |G

2
εpxq| as an upper bound when rM ´ hpt; 0qs{pt ´ σq2 is replaced by the random

version rM ´ hpt; 0qs{pTk,i ´ σq
2.

For t ě σ and µ ě τ , we have that ´Gεpt`τ `µq ď ´Gεpt´τ `µq, and so that hpt`τ ;µq ď
hpt;µ´ τq, and thus

hpt` τ ;µq ď hpt; 0q ` rM ´ hpt; 0qs ¨

„

µ´ τ

t´ σ

2

.

For t sufficiently large, hpt; 0q ´ hpt` τ ; 0q is small enough for any τ , so that

hpt; 0q ´ hpt` τ ; 0q

M ´ hpt` τ ; 0q
ď

ˆ

τ

t` τ ´ σ

˙2

.

This is equivalent to

hpt; 0q ď hpt` τ ; 0q ` rM ´ hpt` τ ; 0qs ¨

„

τ

t` τ ´ σ

2

. (22)

This implies that on rτ, t` τ ´ σs,

hpt; 0q ` rM ´ hpt` τ ; 0qs ¨

„

µ´ τ

t´ σ

2

ď hpt` τ ; 0q ` rM ´ hpt` τ ; 0qs ¨

„

µ

t` τ ´ σ

2

(23)
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as indeed both quadratic forms have the same value, M, at µ “ t ` τ ´ σ, while for µ “ τ this
reduces to (22). The right hand side of (23) has the same form as the right hand side in (21).
As a result, for t sufficiently large, the constant M in (21) does not depend on t. By choosing a
value for M larger than 4|Gεpσq|, the upper bound in (21) holds for any µ. Taking into account
Remark A.2, we can write

hpt;µq ´ hpt; 0q ď qptqµ2,

where

qptq “ min

ˆ

2 max
xPIR

|G2εpxq|,
M ´ hpt; 0q

pt´ σq2

˙

.

For large values of µ, we however need a third and tighter upper bound. Because of the
symmetry in fεpxq, we have for µ “ 2t, that hp2t; tq “ ´Gεp3tq ´Gεp´tq “ ´Gεp3tq `Gεptq and
as 2t is far beyond the largest local maximum of |hpµ; tq| as a function of µ, it holds for µ ą 2t
that hpµ; tq ą hp2t; tq, and so

|hpµ; tq ´ hp0; tq| “ hp0; tq ´ hpµ; tq ă hp0; tq ´ hp2t; tq “ |3Gεptq ´Gεp3tq| ă 3|Gεptq|.

The three parts of the analysis allow us to conclude that the approximation error of rmk is
bounded by

|mk ´ rmk| ď
1

n

n
ÿ

i“1

E |hpTk,i;µiq ´ hpTk,i; 0q|

ď
1

n

n
ÿ

i“1

P pTk,i ą |µi|{2qE pqpTk,iq|Tk,i ą |µi|{2qµ
2
i

`P pTk,i ď |µi|{2q3E p|GεpTk,iq| |Tk,i ď |µi|{2q . (24)

Moreover, it is easy to find a constant K so that qptq ď K{t, for all values of t, and also,
because qptq is a monotonously non-increasing function, we have

E pqpTk,iq|Tk,i ą |µi|{2q ď E pqpTk,iqq ď KE p1{Tk,iq Ñ 0 when nÑ8.

Combining this with Assumption (11), we find for the first sum in (24),

1

n

n
ÿ

i“1

P pTk,i ą |µi|{2qE pqpTk,iq|Tk,i ą |µi|{2qµ
2
i “ o rPEppµkqs .

For the second sum in (24), we see that if P pTk,i ď |µi|{2q does not tend to zero, then by
Markov’s inequality, we have

P

ˆ

1

Tk,i
ą

2

|µi|

˙

ď E

ˆ

1

Tk,i

˙

|µi|

2
ñ |µi| ě

2P
´

1
Tk,i

ą 2
|µi|

¯

E
´

1
Tk,i

¯ Ñ8.

With |µi| Ñ 8 and E p1{Tk,iq Ñ 0, the value of E p|GεpTk,iq| | Tk,i ď |µi|{2q then tends to
E p|GεpTk,iq|q which in turn tends to zero since, under Assumption (A2), there exists a con-
stant L so that |Gεptq| ď L{t. As a result, we have

1

n

n
ÿ

i“1

P pTk,i ď |µi|{2q3E p|GεpTk,iq||Tk,i ď |µi|{2q “ o rPEppµkqs ,
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thereby completing the proof. l

B Development of calculations for Equations 17 and 18

With Γ the gamma function and Fχ2
w

and fχ2
w

the cumulative distribution function and density of
the χ2

w distribution, we find the following result for Equation (17):

rml “
σ2

r

r
ÿ

j“1

E

¨

˚

˝

ż

T2
l,j

σ2

0
p1´ uw´1qfχ2

w
puqdu

˛

‹

‚

“
σ2

r

r
ÿ

j“1

E

¨

˚

˝

ż

T2
l,j

σ2

0
p1´ uw´1q

1

2
w
2 Γpw2 q

u
w
2
´1e´

u
2 du

˛

‹

‚

“
σ2

r

r
ÿ

j“1

E

¨

˚

˝

ż

T2
l,j

σ2

0

1

2
w
2 Γpw2 q

u
w
2
´1e´

u
2 du´

1

w

ż

T2
l,j

σ2

0
u

1

2
w
2 Γpw2 q

u
w
2
´1e´

u
2 du

˛

‹

‚

“
σ2

r

r
ÿ

j“1

E

¨

˚

˝

Fχ2
w
pT 2
l,jσ

´2q ´
2Γpw2 ` 1q

wΓpw2 q

ż

T2
l,j

σ2

0

1

2
w
2
`1Γpw2 ` 1q

u
w
2 e´

u
2 du

˛

‹

‚

“
σ2

r

r
ÿ

j“1

E

ˆ

Fχ2
w
pT 2
l,jσ

´2q ´
2Γpw2 ` 1q

wΓpw2 q
Fχ2

w`2
pT 2
l,jσ

´2q

˙

“
σ2

r

r
ÿ

j“1

E
´

Fχ2
w
pT 2
l,jσ

´2q ´ Fχ2
w`2
pT 2
l,jσ

´2q

¯

Also, when the group size w is 1 (singletons), Equation (17) reduces to Equation (18):

rmk “ rml “
σ2

r

r
ÿ

j“1

E
´

Fχ2
1
pT 2
l,jσ

´2q ´ Fχ2
3
pT 2
l,jσ

´2q

¯

“
σ2

r

r
ÿ

j“1

E

¨

˚

˝

1

Γp12q

ż

T2
l,j

2σ2

0
u´

1
2 e´udu´

1

Γp32q

ż

T2
l,j

2σ2

0
u

1
2 e´udu

˛

‹

‚

“
σ2

r

r
ÿ

j“1

E

¨

˝

1

Γp12q

ż

Tl,j
σ

0

ˆ

u2

2

˙´ 1
2

e´
u2

2 udu´
2

Γp12q

ż

Tl,j
σ

0

ˆ

u2

2

˙

1
2

e´
u2

2 udu

˛

‚

“
σ2

r

r
ÿ

j“1

E

¨

˝

1

Γp12q

ż

Tl,j
σ

0

?
2e´

u2

2 du´
2

Γp12q

ż

Tl,j
σ

0

1
?

2
u2e´

u2

2 du

˛

‚

“
σ2

r

r
ÿ

j“1

E

¨

˝

2
?

2Γp12q

ż

Tl,j
σ

0
p1´ u2qe´

u2

2 du

˛

‚
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Figure 5: Image denoising for 10 handwritten digits using Mallows’ Cp and the mirror-corrected
Cp in unstructured and group selections.

“
σ2

r

r
ÿ

j“1

E

˜

2
?

2Γp12q

Tl,j
σ
e´

T2
l,j

2σ2

¸

“ 2σ2r´1
r
ÿ

j“1

E pTl,jφσpTl,jqq “ 2σ2n´1
n
ÿ

i“1

E pTk,iφσpTk,iqq

as e´
u2

2 ´u2e´
u2

2 is the derivative of ue´
u2

2 and Γp12q “
?
π, φσ being the density of a zero-mean

normal random variable with variance σ2.

C Illustration for image denoising

In its first column, Figure 5 presents a sample of 5 noise-free images, then the noisy ones in the
second column. Finally the denoised images using Mallows’ Cp and the mirror-corrected Cp
in unstructured and group selections are shown in the third to fourth, and fifth to sixth columns
respectively.
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