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Abstract

Multiresolution triangulation meshes are widely used in computer graphics for representing
three-dimensional (3-d) shapes. We propose to use these tools to represent 2-d piecewise
smooth functions such as grayscale images, because triangles have potential to more effi-
ciently approximate the discontinuities between the smooth pieces than other standard tools
like wavelets. We show that normal mesh subdivision is an efficient triangulation, thanks
to its local adaptivity to the discontinuities. Indeed, we prove that, within a certain funtion
class, the normal mesh representation has an optimal asymptotic error decay rate as the
number of terms in the representation grows. This function class is the so-called horizon
class comprising constant regions separated by smooth discontinuities, where the line of
discontinuity is C? continuous. This optimal decay rate is possible because normal meshes
automatically generate a polyline (piecewise linear) approximation of each discontinuity,
unlike the blocky piecewise constant approximation of tensor product wavelets. In this way,
the proposed nonlinear multiscale normal mesh decompisition is an anisotropic represent-
ation of the 2-d function. The same idea of anisotropic representations lies at the basis of
decompositons such as wedgelet and curvelet transforms, but the proposed normal mesh
approach has a unique construction.
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1 Introduction: imageswith long smooth edges

This paper concerns the representation and approximation of piecewise smooth, two-dimensional
(2-d) functions, which consist of smooth regions delineated by step discontinuities along smooth
one-dimensional (1-d) contours, which we call edges. Many different types of real-world data
can be modeled as piecewise smooth. As an important example, a piecewise smooth function is
a quite accurate model for a grayscale image, which represents the light intensity of a black-and-
white visual scene. While we will use images as our central, running example in this paper, other
examples abound in statistics and differential equations for a broad spectrum of applications.

By approximation, we mean approximating a piecewise smooth function with a finite dimensional
representation. Immediate applications of approximation results include compression and noise
removal (denoising).

For images and many other kinds of data, an approximation is typically defined on a discrete set
of points on some grid. For example, digital images are typically acquired by sampling the light
intensity at discrete points on a square grid of pixels (currently using a CCD array), and so image
representations and processing algorithms typically operate on this square grid. The square pixel
grid is nearly always assumed to be fixed, with the dependent variable of the image the pixel
intensity. While the acquisition and processing of image data on a square grid of pixels is simple,
it turns out to be very inefficient for representing many important image features, including the
edges.

Edges are the dominating features in piecewise smooth 2-d functions. Edges contain two types of
information: where the edge is located, i.e., its location and geometry, and what is the step value,
i.e., the height of the discontinuity. In 2-d, geometry information plays a crucial role, much more
than in 1-d. In 1-d piecewise smooth functions, discontinuities occur at isolated points, and these
can be easily captured in a wavelet transform. In 2-d, edge singularities lie along 1-d contours,
which are much harder to capture.

The time-scale analysis of the wavelet representation provides a powerful tool for approximating
a 1-d function f. Thanks to the local support of the basis functions, under mild conditions, a
nonlinear wavelet approximation f,, containing the n largest terms of the wavelet expansion of
f performs as well on a piecewise smooth f as on a smooth f [19,20,8,7,13]. Indeed, the L,
approximation error decays rapidly with increasing n:

If = fad v =0 (n ). (2)

In this equation, v stands for

v = min(p, ),

with p the number of (dual) vanishing moments of the wavelet analysis and « the Lipschitz regu-
larity of the signal at its non-singular points. Wavelets provide a very efficient representation of 1-d



Fig. 1. Haar wavelet approximation of a 2-d piecewise constant image featuring a smooth 1-d edge sin-
gularity. Each shaded square corresponds to the support of a wavelet basis function. At each finer scale,
an increasing number of wavelets is necessary to cover (and hence represent) the singularity. This effect
does not exist in 1-d and explains the suboptimal performance of wavelets for representing 2-d piecewise
smooth functions. Another drawback of tensor product wavelets is that they approximate the edge curve as
a piecewise constant. This explains the “blockiness” of wavelet image approximations.

piecewise smooth signals primarily because in 1-d the geometry information consists of merely a
few isolated points.

Wavelets are thus well-suited for estimating a piecewise smooth 1-d function in the presence of
noise. In the minimax sense, the performance of a simple n-term approximation algorithm comes
within a neglectible logarithmic factor of the best possible method involving a piecewise polyno-
mial with knots at the (assumed known) positions of the singularities [12].

Unfortunately, this approximation power does not carry over into two and higher dimensions. In-
deed, standard tensor-product wavelet transforms based on a square grid of 2-d sampling points
are ill-prepared to represent edges, since many wavelets overlap with the 1-d edge, leading to a
preponderance of geometry information (see Fig. 1).

Given a 2-d function f that is smooth except for an edge singularity along a smooth (say C?) curve,
the nonlinear wavelet approximation f,, using the n largest wavelet terms has an L, error rate

||f _ fTQL_d Wavelet“ =0 (n—l/Q) )

This outperforms a Fourier procedure, where about the best we can do is a linear approximation
taking the first n Fourier coefficients

||f _ fz—d Fourier” -0 (n—1/4) _

Nevertheless, neither of these procedures comes close to the 1-d rate of (1). This is partly due to an
inherent dimensionality effect: approximation of 2-d data is inevitably more difficult than 1-d data.
Yet, wavelets do not obtain the optimal 2-d rate either. They approximate a curved singularity as a
piecewise constant. This observation explains the blocky output of wavelet image approximations.



In order to achieve better approximation rates on 2-d edge contours, new, edge-adaptive, multiscale
decompositions have been developped in recent years. Due to the numerous possible orientations,
lengths and curvatures of edges, it is impossible to catch all possible edges by a basis decomposi-
tion. The new multiscale decompositions therefore may proceed in overcomplete respresentations
(frames), such as contourlets [9] or curvelets [2]. Another type of edge-adaptive decompositions
is by a best basis selection within a overcomplete collection (called library or dictionary) of can-
didate bases. Examples of such constructions are wedgelets [10,23], platelets [27], bandelets [18],
beamlets [11] and others [6,24,16].

The idea followed in this paper is to treat images as special cases of 3-d surfaces and represent
them using triangular image patches [22,15]. A triangulation consists of triangles, that is, triplets
of vertices connected by edges (not to be confused with image edges). Because the triangles edges
can be placed in arbitrary locations and orientations, triangles have the potential to represent ar-
bitrary edge contours (the geometry information) more accurately with a fewer number of patches
than a fixed square grid representation. The key is to use an adaptive triangulation that places
vertices more densely in edge regions for accurate and efficient edge representation, yielding a
parsimonious image representation (see Fig. 2).

Indeed, an adaptive triangle-based decomposition can provide a piecewise linear edge approxima-
tion, provided that the triangulation adapts itself to the precise locations of the edges. Ideally, this
could lead to an error rate of

||f _ fg—d adapt. tri.” -0 (n—l) : )

For efficient processing of 3-d mesh data, multiscale triangulation based on nonlinear subdivision
has been proposed in computer graphics. Multiscale mesh construction starts from a small number
of coarse-scale points on the surface. Finer triangular meshes are formed by subdividing, that is,
by gradually adding more data points (vertices, pixels). Unlike the standard subdivision scheme
that places new vertices at the midpoints of the triangle edges, we can adapt the location of the new
vertices based on local geometry information. The normal mesh scheme selects the new points
based on the local normal direction computed from the previous coarser scale mesh [17].

Originally developed for efficient 3-d surface representation, we will show that the normal mesh
representation shows remarkable adaptivity to the edge structure of 2-d piecewise smooth functions
(see Figure 2(c)). Starting with an arbitrary set of initial vertices, we will demonstrate that the
normal mesh subdivision algorithm rapidly places more and more vertices directly on the edge
contour, enabling a direct representation of the location and geometry information of edges as well
as the information on (the height of) the singularity itself. Adaptivity and better approximation
with triangles are the keys to the success of normal meshes as opposed to wavelets.

In this paper, we propose a multiscale normal mesh representation for piecewise smooth 2-d func-
tions such as images. We will show that for the idealized horizon class of images that are piecewise
constant save for a C? edge discontinuity we obtain the optimal error decay rate of (2).

This asymptotic error decay is the same as the one obtained with wedgelets [10] and a log-factor
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Fig. 2. Representing the 2-d function f(z,y) = z? + y* + Ity>0.1/z}- (@) 3-d mesh plot of the function.
(b) A square grid representation such as that used by a tensor-product wavelet transform. The dashed line
is the hyperbolic edge in f(x,y). (c) A non-adaptive triangular refinement has the potential of a better
approximation of the edges, but it does not exploit this potential: the triangle sides do not constitute an
interpolating polyline (i.e., piecewise linear) approximation of the edge. The vertices do not lie on the edge.
(d) The combination of triangulation and adaptivity does the job.

faster than curvelet approximation [3]. The normal mesh decomposition of an image of n pixels
has linear, i.e., O(n), computational complexity, compared to O(n log n) for a wedgelet transform.
Curvelets and wedgelets are inherently overcomplete representations and had first been developed
for image enhancement, rather than compression. Later, they were adopted in compression al-
gorithms as well [23]. On the other hand, the normal mesh approach proposed in this paper, is
specifically oriented towards image compression: the geometry of an edge and its singularity are
both stored into the normal offsets, i.e., the coefficients of the decomposition. The decomposition
requires no additional constructions — such as edgelets in a wedgelet transform — to take care of
the location and orientation of edges. A second unique feature of the proposed decomposition is its
embedding into the lifting scheme. Altough beyond the scope of this paper, the proposed scheme
can be incorporated in a natural way into an adaptive lifting scheme which applies wavelet steps in
textured areas and uses normal meshes in areas with long, smooth edges. Such an adaptive scheme
is straightforward and requires no iterative implementation. It is subject of current research. The
scheme can also be extended to faster approximate edges whose curves are more than twice differ-
entiable.

The idea of data-adaptive triangulation has been elaborated under different assumptions in [14].
In that paper, the triangulation is constructed based on an existing set of vertices. These vertices
coincide with samples of the function and remain fixed. The normal offset method on the other
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Fig. 3. The triangular subdivision principle: four triangles at a finer scale are generated by subdividing each
triangle at the next coarser scale.

hand first finds the best locations for the vertices before triangulating them. These locations are
chosen for optimal approximation.

Data-adaptive meshes (content-based triangulations) are also popular in video compression, see
for instance [26,1]. Apart from the fact that data-adaptive meshes in video are not generated with
normal offsets, there are at least two conceptual differences with the normal mesh method pro-
posed in this paper. First, the content-based triangulations in video processing are obviously driven
by motion analysis. Second, the triangulation in this paper cannot stand on its own, it is not an in-
dependent mesh generation but only a by-product in the multiscale (wavelet-like) decomposition.

This paper is organized as follows. In Section 2 we overview background on triangulations for gen-
eral 3-d surfaces, present the normal mesh concept, and specialize the construction to 2-d piecewise
smooth functions. The rest of the paper conducts a detailed performance analysis for horizon class
images in two steps. In Step | (Sections 3 and 4), we analyze the normal “mesh” (polyline) ap-
proximation in 1-d. In Step Il (Section 6), we leverage this analysis into the 2-d horizon class case.
Section 7 presents some practical results on synthetic and real images. Section 8 offers a discussion
and conclusions.

2 Multiscale Image Triangulations

2.1 Quadtree triangulations

Consider the construction of a multiscale triangulated function representation using the principle of
subdivision (vertex refinement). In standard subdivision for 2-d functions, we introduce vertices for
the next finer scale at the midpoint of the existing triangle legs. This results in four child triangles
that, in the function domain, cover the same area as their parent (see Fig. 3).

Once we begin and fix the rules for refinement, we need only specify the initial vertex points; finer
scale vertices are uniquely defined without extra information. This is valuable in applications such
as compression, where a parsimonious image representation is required.

To build a wavelet transform for a multiscale triangulated image representation, we separate the
vertices from the finest scale mesh into two groups: those from the previous coarser scale (group



A) and those obtained by the subdivision of these points (group B). With this “decimation” of
points, we can apply the lifting scheme [25] to implement a wavelet transform on the triangular
grid.

For each point in group B, we define a proper neighborhood window around it, and we predict
the value at that point using the points from group A in the neighborhood. The simplest algorithm
merely applies simple linear prediction [25]. By subtracting the predicted value from the actual
value, we obtain the wavelet coefficient. The scaling coefficients are obtained by updating the
points in group A by adding update values computed from the wavelet coefficients.

2.2 Normal subdivision in 1-d

The salient concepts of normal subdivision are easily described in a simple 1-d example. In a
standard 1-d wavelet transform, a wavelet coefficient is computed as the vertical offset between a
sample value and its prediction based on its neighboring samples. The length of the dashed, vertical
line in Fig. 4(a) is such a wavelet coefficient; it tells how far the function value in the middle point
deviates from a linear interpolation of its two neighbors at the next coarser scale. Instead of linear
interpolation, more sophisticated predictions could be used and more coarse scale neighbors could
be involved.

The normal subdivision in Fig. 4(b) is very similar, except that it computes its offset in a direction
normal to the current, coarse scale prediction. Thus, the detail coefficient tells us how far to go, not
just vertically, but in a specific direction, supplying geometry information. This normal direction
obviously depends on the coarse scale prediction, which makes the procedure nonlinear.

The normal subdivision scheme in 1-d proceeds as follows:

(1) Choose the initial, coarsest scale data points on the curve and connect them into a piecewise
linear approximation, i.e., an interpolating polyline approximation of the curve.
(2) Repeat the following steps for each pair of successive points:

(@) Compute the midpoint of the polyline segment connecting the two successive points.
This is the prediction for the new point. Compute the direction of the vector normal to
the polyline segment in this midpoint.

(b) Find the point on the function curve that is pierced by the normal vector. The new point
is defined by the coordinates of this piercing point.

(c) Record the displacement between the midpoint prediction and the piercing point as the
wavelet coefficient for the new point.

2.3 Normal subdivision in 2-d

We can treat a 2-d piecewise smooth function as a surface in 3-d space and build a normal mesh
for it. Step edges in the 2-d function now become vertical 3-d surfaces. The basic steps to building



Fig. 4. 1-d wavelet coefficient computation in (a) the classical lifting scheme and (vertical offsets) and (b)
the normal mesh scheme (normal offsets).

a normal mesh of a 2-d function run as follows:

(1) Choose the initial, coarsest scale vertices and connect them into a triangular mesh. In the
simplest case, the initial vertices can be the set of four corner points of the function (assuming
it has a finite domain).

(2) Repeat the following steps for each edge of the triangulation until the approximation con-
verges:

(@) Compute the midpoint of the edge. This is the prediction for the new vertex. Compute
the direction of the vector normal to the surface that fitting the immediate neighbors of
the edge.

(b) Find the point on the function surface that is pierced by the normal vector. (In practice,
with a sampled 2-d function, the surface is defined locally by fitting the given sample
points.) The new vertex is defined by the coordinates of this piercing point.

(c) Record the displacement between the midpoint prediction and the piercing point as the
wavelet coefficient for the new vertex.

(d) Using the new vertices, retriangulate each triangle to obtain the finer mesh through sub-
division.

A stopping rule in this refinement process depends upon the application. In digital image pro-
cessing, for instance, refinement stops as soon as all pixels have been inserted. Note that the refine-
ment generates irregular grids, so it may be necessary to continue in some areas after convergence
in other areas.

In some exceptional cases, we cannot use the normal piercing point and we need to go back to the
usual midpoint subdivision scheme. This is further elaborated in Section 6. A similar exception
handling occurs in a normal mesh decomposition of surfaces [17].

As illustrated in Fig. 2(d), this procedure builds a normal mesh with remarkable adaptivity to the
locations of the singularities in the function. Even with an arbitrary choice of initial vertices, the
normal mesh algorithm almost immediately starts placing new vertices close to the singularities,
making the edges of the triangles align with the function contours. As the triangles refine, the
normal mesh provides a successive piecewise linear approximation of each contour, yielding an
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Fig. 5. (@) Normal mesh approach at a discontinuity, compared to (b) the classical subdivision scheme. In the
normal mesh case, the approximation f;, at scale j 4+ 1 has a point on the exact location of the singularity,
because the normal offset points to this singularity.

efficient representation of 2-d singularities with a small number of normal mesh detail coefficients.

The mechanism behind this interesting behavior is explained by considering a simple 1-d step
function example, as illustrated in Fig. 5(a). The normal direction tends to point to the singularities;
if two vertices at a coarse scale j lie on either side of a singularity, then the normal piercing point is
always closer to the singularity than the standard midpoint subdivision point. And once the inter-
vertex distance r; becomes smaller than the singularity height A, then the newly inserted point is
always on the singularity itself, see Section 3.1.

We will now analyze the performance of 2-d nonlinear approximation based on normal mesh tri-
angulations for horizon class images. We proceed in two steps. Step | (Sections 3 and 4) analyzes
the performance of normal “meshes” (polylines) at representing 1-d step discontinuities. Step |1
(Section 6) then extends this analysis to take into account the continuous curve of 1-d step discon-
tinuities present in a horizon class image.

3 Analysisl: Normal Polylinesfor 1-d Piecewise Constant Functions

This section analyses the behavior of a normal polyline approximation of a piecewise constant
function. It turns out that the convergence rate depends on the initial geometry, i.e., the exact loca-
tion of the singularity. We derive both an average rate, in Theorem 1, and a minimum convergence
rate, in Theorem 3. Since the convergence rate depends in a chaotic way on the initial geometry,
the analysis of the minimum convergence rate requires some additional lemmas.

3.1 Rapid localization of singularity position

Suppose we have a step function f(z) = A - 1554, With a discontinuity at z, € (0,1) and
let A = f(xo+) — f(zo—) be the height of the discontinuity. We wish to construct a multiscale



Fig. 6. Evolution of the approximation near singularities through successive scales.

approximation f; of this function, where j denotes the scale (or resolution level). The normal mesh
subdivision scheme generates an irregular grid «; near this singularity. In this analysis, we consider
normal offsets with respect to a prediction by polylines, i.e., piecewise linear functions which are
continuous in the knots. We call r; the uncertainty about the location (i.e., geometry) of the jump,
i.e., the width of the sample interval [x;; x;;.1], containing the singularity zo: r; = ;11 — @
and z;; < zy < z,,41. By construction in Figure 5 (top), it holds that r; < r;_,/2, so

r; = O(Q_j).

If r; becomes smaller than A, then for certain r,4; = 0, i.e., the next subdivision point lies on
the singularity. This can be seen by sketching the situation where A = r; and z,,41 = zo + 6,
with ¢ arbitrarily small. This situation is the least favorable for a given width r;, and yet, the next
piercing point lies on the edge. This singularity locating property becomes crucial in 2-d, as we
discuss later.

3.2 Expected behaviour near singularities

After having located the singularity position, the algorithm breaks down into two independent
approximations: the behaviour left of the singularity is independent of, though similar to the beha-
viour on the right, so we study (the left) one side only, as in Figure 6. For further reference, we let
the first subdivision point on the singularity correspond to level j = 0.

The procedure gradually reduces the error near the singularity, which essentially happens in two
possible ways, depending on the slope of the present approximation, i.e., the angle «; in the picture.
If o; < /4, as in the figure, the normal direction pierces the step function in its flat (horizontal)
region, thereby reducing the interval on which the approximation differs from the true function.
We call S; the width of this interval: it is the support of the (left side of) the approximation error.
On the other hand, if «; > /4, the normal direction finds a new point on the singularity, and so it
reduces the height H; of the error function. H; is also the L., norm of the (left side) error function.
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Fig. 7. (a) Evolution of the logarithm of the error support and the error L ,-norm for a normal mesh approx-
imation of a step function. (b) Log of the Ls-norm of error function as function of n, the number of detail
coefficients.

It holds that:

(1) If a; < w/4 then
® Ojt1 = EJ (1 — tan? ozj) =5;
L] Hj+1 = Hj
® Qi1 = 2&]'
(2) If o; > /4 then
® Sjt1=15;
H.
e Hi\ = 77 (1 — cot? aj)

tan o
tan 204j

[ ) Oéj+1 = 2&]' — 5
In other words, if o;; > /4, the support width of the error function remains unchanged, but if it
changes, i.e., if a; < /4, itis reduced by a factor of more than a half. This means that the conver-
gence is not monotone, and the precise process depends on the initial angle a,. Figure 7(a) plots
log, S,, and log, H,, and Figure 7(b) compares the logarithmic error log, ||€,||2 = log, 1/ SnH2/3
with that of Haar wavelets (log, ||¢,.|| = O(—n/2)). Note that the number of coefficients n equals
the scale 5. We could state all results in terms of n, but we chose to use j as subscript wherever a
result or argument is based on thinking in scales.

It is interesting to analyse the behaviour of a wavelet approximation in this framework. Figure 8
shows that the support of the error function is divided by two in every step, but the height (i.e., the
difference between maximum and minimum of the error curve) remains a constant. This leads to a
L-error rate of O(277/2).

Theorem 1 If the initial angle oy is uniformly distributed on [0, 7 /2], then all subsequent o; are

11
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Fig. 8. The evolution of the error of a Haar approximation for a step function on [0, 1] with step at 1/3. The
3 plots on top compare the approximation with the true function at successive scales. The plots below show
the corresponding error function. The error support width is reduced by a factor 2 in every step, but the error
height remains a constant.

uniformly distributed, and the expected logarithmic error reduction is:

/4
~v = Elog ”6”“” __3_ / log cos a da
) 2 lenll 2 7r10g2
Proof:
|| €nt| Sny1Hj
v:=Elog =Elogy \| ———7—
? el "\ SaH
/4 /2
11 //10 1 —tan’« p +//1 1 —cot? 2d
=577 go | —— | de 0g | —— — «
0 w/4
w/4 /4
1 ? — sin® 1
== ?)/log2 (COS a 2s1n a) da+3/log2—da
s Ccos* o 2
0 0
3 w/4 9
cos 2«
= —Zlog22+ /log2 7 do
3 s s !
= | —-—=+ log cos « da——/logcosa do
7r 4 210g2 /
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_3fr_m_ 2 /10 cosa d
o 4 4 ]0g2 geosa da

~ —g +0.24 =-1.26

We used the fact that cot « = tan(7/2 — «), to reduce all integrals to the interval [0, 7 /4] and we
filled in the known integral

w/2
/ logcos a daw = wlog2/2.

O

Note that we could make this analysis, because the uniform density is invariant under the re-
finement scheme for «;. Starting from any other density with bounded derivative, the successive
density functions rapidly converge to a constant:

Lemma2 If f, is the density function of the angle «, after n refinement steps, and if the initial
density f, has a bounded derivative on [0, 7/2], then

Jim fo(a) =2/

Proof: Let

A= max_|[fo(a)],

a€l0,7/2]
and note that

fala) = fnl( )-i— fnl(i"‘%)-

It then follows immediately that all f,, are continuous and differentiable and that
[fn()] <27"A.
From the middle value theorem, we then have that for any =,y € [0,7/2], |fu(z) — fu(y)

|
27 "Alr — y| < 27" 1Ax. From this, it follows immediately that the limiting functlon f(zx)
lim,, o frn(2) satisfies f(z) — f(y) = 0 for any = and y. Using the fact that for all n,

I IA

w/2

[ fa@)dz =1,

0
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we find that the constant is indeed 2/7. O
3.3 Ergodicity

The question arises whether the average error reduction per step, i.e., the mean reduction taken
over a sequence of scales, converges to the expected error reduction in Theorem 1. Figure 7(a)
seems to confirm this for an arbitrary initial «.

It is interesting though to observe that
Qy -\ T
O!j = frac (7_‘_—/22]) 5,

where frac(z) is the fractional part of a real number z. If we call

a.
Bi = —=

= ©

then we see that in binary notation f; is the fractional part of the number obtained by shifting the
point in 3, over j positions to the right. Then it is clear that

Bo = .010011000111000011110000011111000000111111 ...

induces a sequence with two accumulation points (0 and 1) and that the a; do not fill up the
interval [0, 7 /2] uniformly. This holds even more for 5, € @, in which case only a limited subset of
possible angles show up ever again. o,y = /4 leads to immediate convergence. Another example
is By = .010101010... corresponding to ay = /6. In this case a; alternates between ay; =
7/6 and oy = /3, and it is easy to check that the convergence rate for the L,-norm is then
log,(3v/3)/2 =~ 1.19, which is a bit slower than the average. The next section shows that this is the
slowest possible convergence.

There is an immediate and interesting connection with the notion of “normal numbers” in number
theory [21, Chapter8]. A normal number in base b is a number where any configuration of n digits
(for any choice of n) appears with frequency 1/b™. If 3, is normal in the 2-base, this means that
any sequence of n bits in its binary notation, appears with frequency 1/2". The $; following from
the refinement scheme on a normal 3, are uniformly distributed. Indeed, as mentioned before,
the uniform density is invariant under the refinement map. In measure theory, it is said that the
refinement 7'(8) = frac(28) := 26 — |26] on the unit interval with Lebesgue measure (i.e.,
uniform distribution) is an endomorphism. In this definition frac(-) denotes the fractional part
of a real number and |-| stands for the integer part. It can be proven that this endomorphism
is ergodic, i.e., T7'(A) = A is only possible if P(4) = 0 or P(A) = 1. Birkhoff’s ergodic
theorem then guarantees that the average of any (measurable) function f(3) over the observed

14



values 3; = T'(f;—1) converges and that the limit equals a.s. the expectation of this function with
respect to (in our case) the Lebesgue measure, i.e., the uniform density. If we take for f(53) the
characteristic function on an interval [0, B], for arbitrary 0 < B < 1, we see that the frequency
of 3; < B equals B, which is the cumulative of the uniform density. This proves that almost all
initialisations 3, induce a uniformly distributed sequence. The set of such initial 3, equals the set
of normal numbers in [0, 1].

3.4 Minimum convergence rate

Theorem 3 The error ¢; of a normal polyline approximation of a singular point in a piecewise
constant function as in Figure 6 satisfies:

n

1 .
7 := lim — > log lesll2 < —log,(3v3)/2 ~ —1.19.

nveon 0 lejalle T

From the analysis in Section 3.2, it is clear that the function 7(c) shows a sort of fractal behaviour
and simple optimisation techniques do not apply. In order to prove the theorem, we specifically
show that oy = 7/6 leads to the slowest convergence rate. To do so, we start with some quick
observations:

Lemma4 If the sequence o is generated as defined in Section 3.2, then Vj € Z

¥(c;) = 7(cw).
In particular: the asymptotic behaviour for ciy = Sy /2 is the same as that for a; = f;7/2, where
B is the fraction obtained by shifting the binary representation of 5, up to the first 0- 1-switch.

So, in .0000001 ...7/2, the first zeros can be omitted for asymptotic analysis. This is a trivial
asymptotic argument. It limits the search for the maximum value of 77( ) to the interval (7 /8, 37/8).

Lemma5 Measured in L;-norm, the error decay starting from initial angle «, is exactly the same
as the error behaviour for 7/2 — «p.

This is clear from Figure 9. Unlike wavelets, the normal polyline approximation does not treat a
signal as a function, and therefore it does not see jumps as discontinuities. Horizontal and vertical
line segments are treated equally.

In Ly, investigating 3, is equivalent to investigating 1 — 53,. In other words, switching all zeros and
ones in B,’s binary representation does not change the L, behaviour.

Lemma6 Minimising the asymptotic L, decay is equivalent to minimising the asymptotic L, be-
haviour.
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Fig. 9. Normal polyline approximation near a singularity. The approximation is determined by the angle « ;,
but a; and w/2 — «; correspond to the same Ly error.

This is because ||e,|[5 = S,HZ, and, once more, the normal polyline approximation does not
make a difference between vertical and horizontal sections of a piecewise constant signal. As a
consequence, H,, = O(S,,), from which the Lemma follows. Lemmata 5 and 6 further restrict the
maximisation to the interval (7 /4, 37/8).

Figure 10 plots the two and three steps log-average decay of the L,-error as a function of the initial
angle «p. In general, we call

n

— 1 €jll1
M(0) 3= — > _log I

=7 el

the n steps average decay of the L, -error. Note that n,,(7/6) = — log, 3 = 1, (7/3), independent of
n. According to Lemma 6, we prove the theorem for L, if we show that this value is the maximum
of

M(ao) := lim 7 ().

This 7j(«ay) is the L, equivalent of the objective function 7(ay).

The singular points of 7, («p) are & - (7;@ with £ = 0,...,2" — 1. The lobes in between are
characterised by the first » digits in the binary representation of 5, = ay/(7/2), as indicated in

Figure 10. As n increases, the plot of 7, («) soon becomes chaotic.

ap = /3 clearly is not a maximum of 75 or 73. Especially starting angles near 0 or 7/2 seem to
show a much slower convergence than that of o,y = /3. This is however just an initial behaviour.
For the asymptotic analysis, it suffices to analyse within the interval (7/4, 37/8), but even there,
7/3 is not a maximum. Even within its own lobe, there are angles that converge more slowly in the
first three steps.
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(b)

Fig. 10. (a) Mean two steps log-average decay of the Li-error as a function of the initial angle «y. (b)
Mean three steps log-average decay of the L1 -error as a function of the initial angle c.q. The binary figures
correspond to the first two, resp. three digits in the binary representation of Sy = ag/(7/2).

Nevertheless, we can prove the following lemma:
Lemma?7 Let a, and b, be the end points of the lobe containing 7/3 in the n-th subdivision
step, i.e., lim, o, Tn(@) = —o00 = lim, 4, Tn(e) and 7,(a) € R, Va, < a < b,. Let m,, =
(an, + by,)/2 be the middle point of this lobe and 7, («) = 7,(2m,, — «) the mirror of 7, around
this center point. Then:

Vo € (an, my) : Tn(a) > 0p(a) iffa, < 7/3 < my,.
In other words, every lobe that contains /3 is asymmetric around its center, and the side that

contains 7 /3 is always higher than its mirror. Moreover, two mirroring angles «,, and &,, within
the same lobe in step n satisfy:

and according to Lemma 5, the subsequent subdivision steps lead to exactly the same L, error
decay for both «,, and its mirror.

As a consequence, if for instance

m
ap =.101010010010101 .. o
then one can always find an initial angle with slower convergence, namely its mirror in the lobe
101010:

all = .101010101101010. . g

As soon as two consecutive digits in the binary notation of 3, are equal, flip all subsequent digits,
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Fig. 11. A normal polyline does not make any distinction between piecewise constant functions (left) and
continuous piecewise linear functions with rectangles in the singular points (right). As a matter of fact, the
notion of function is not that important at all.

and the resulting angle will converge slower. Repeating this procedure on any arbitrary «, leads
to oy = /3 being the slowest possible initial configuration. So, if we can prove Lemma 7, this
reasoning concludes the proof of Theorem 3.

A similar situation appears in [4, Sections 7.1.1, 7.1.2] in a totally different context. Our problem,
however, does not satisfy the assumptions in Lemmata 7.1.6 and 7.1.7 of [4].

The proof of Lemma 7 can be found in an appendix.

4 Normal polylinesfor 1-d piecewiselinear and piecewise smooth functions

Unlike the wavelet approach, a normal polyline approximation does not use basis functions. It even
does not rely on any concept of function whatsoever. A jump in a piecewise constant function leads
to the same (L) error decay as a rotated version of this function, which is a continuous, piecewise
linear with a rectangle in the singular points, as in Figure 11.

The question arises how well normal polylines do the job for general piecewise linear functions.
Figure 12 analyses the performance in a singular point with angle # (sometimes referred to as a
cusp). Suppose that the normal subdivision point reduces S; and not H;, as in the Figure. It holds
that a; 11 = m —2(7/2 — o) = 20y, and since ¢4, and 6 are the angles of a triangle, this imposes
the condition that o; < (7 — #)/2. Otherwise, the new point reduces H; and not S;. From Figure
12, we see that

tan CYJ'_|_1(SJ'_|_1 — COS QHJ) = tan O!j(Sj — COS 0Hj),

and

Hy _ Sj
sina;  sin(m — 0 — q;)’

18



o
") Gj"'

S =

)Y

A
Al

J+1

Fig. 12. Multiscale normal polyline approximation of piecewise linear function with angle 6. This function
(upper left) can be “laid down” to analyse the L+ error reduction in the j-th step.

This leads to:

cos@sin o cos asin @ tan o
Sj+1 = . . . . J
cosfsina + cosasinf  cosfsino + cos asin @ tan 2«

If o; > (m — 0)/2, we have that a; 1 = 2a; — (7 — ).

Just as in the rectangular case, we can write «; as a fraction of the maximal angle, a; = 3;(m —0).
If 5o = 1/3 or B, = 2/3, all subsequent j3; alternate between these two values. If 3; = 1/3, i.e.,
aj = (m — 0)/3, we have 2a; = m — 6 — «;, and so, from the expressions above, we find

sina;  sin(2a5) ©S;  2cos(ey)  2cos (%9)

Moreover, S;,1/S; = (H,/S;)?, so the corresponding L;-norm reduction in this j-th and all other
steps equals:
Siv1 _ 1
S; 4 cos? (%9) .

For small 6, this error rate can come arbitrarily close to 1. At # = = /4, normal polylines catch a
singularity at the same rate as wavelets. But even for smaller 6, the approximation of a singularity
requires only one coefficient at each scale. This is due to the locality property, which this approach
shares with the classical wavelets. As a consequence, the effort for the approximation of isolated
singularities vanished when compared to approximating a superposed smooth function.
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5 A few words on normal polyline approximation of smooth functions

The convergence rate of a normal polyline approximation for smooth functions (i.e., functions with
a certain number of derivatives) has been extensively investigated [5]. For further reference, we list
a few results which are special cases of that general analysis.

Lemma8 If a function f has a bounded derivative on the interval [a, b], then the subdivision
points z, ; at scale 5 and location £ found by normal offsets on linear prediction, starting from a
(strictly) increasing sequence {zo x }, satisfy:

Tjrr2t1 — Tivr2k| <O [Tk — Tkl
‘xj+1,2k—|—2 - $j+1,2k+1| <d- |xj,k+1 - xj,k"

for some 0 < 6 < 1, only dependent on f, not on j.

This means that

lim sup ‘xj,k-kl — Tjk

. — 0,
J—0o0

I.e., the normal offsets, though not so regular as classical subdivision, leaves no ‘gaps’, or unrefined
subintervals.

The proof relies on a geometrical construction in Figure 13. Refering to this construction, Let m =
(T, Ym) = (Tjr + 2jk+1)/2, (fix + fir+1)/2) be the prediction point and M = sup | f'(z)|.
Then construct two lines with negative and positive slope M, meeting in point b. By construction,
this polyline is a majorant for f. As a consequence, the intersection ¢ = (., y.) of this polyline
with the normal direction satisfies: |z, — Znm| > |%j41,26+1 — Zm|- A further upperbound can be
found by replacing the true normal direction with the lowest possible slope, i.e., the normal on the
polyline in b. The intersection n = (z,, y,,) satisfies |z, — z,,,| > |2;41,2k+1 — Zm|. FOr finite M,
x,, cannot be arbitrarily close to either x; Or & k11, SO |Tjt1,2641 — Tm| < 0'|Tjk — Tp| With
0" < 1. Now it follows that ‘$j+1,2k+1 — Zjk < 6‘$j,lc+1 - xj,k| with § = (5, + 1)/2

Lemma9 Suppose a function f has a bounded second derivative on the interval [0, 4], and fix
f(0) =0, and let z(h) be the z-coordinate of the normal subdivision point, then

zh) 1 . h—ux(h)

B s R

This means that normal refinement generates asymptotically regular subdivision grids.

Proof: Let E(x) = f(x) — f(h) - z/h, be the approximation error function. Given that £(0) =
0 = FE(h) and that |E"(z)| < M, with M = sup |f"(z)|, it follows that |E(z)| is bounded by
the quadratic function with zeros in 0 and /4 and second derivative equal to M. As a consequence,
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Fig. 13. Proof of Lemma 8, see the text of this proof for explanation of the symbols.

0
Fig. 14. At fine scales, normal subdivision creates nearly regular grids.

|E(x)| < Mh?/8. This holds for all z € [0, A], in particular for = the subdivision point, as illus-
trated in Figure 14. By Pythagoras’ theorem, we have for € := z — h/2 that |¢| < |E| < Mh?/8.
So,

x h/2+€

M o = im ——

O

=1/2.

Corollary 10 If f has a bounded second derivative on the interval [a, b], then the approximation
error of a normal polyline f; after j refinement steps satisfies:

|£5(z) = f(z)| < C27%,

for some C' dependent on f but independent of ;.

This means that for certain normal subdivision has the same approximation rate as classical, regular
subdivision. This follows from Lemmata 8 and 9: first, we are sure that the length of all subinter-
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Fig. 15. Although asymptotically normal polylines on smooth data perform as well as regular subdivision
on the x-coordinate, initial convergence of this smooth function may be as slow as the worst case analysis
of the piecewise linear function in Figure 12.

vals converge to zero, and because they do so, the second lemma guarantees that all subintervals
have length of order 2=7. The result then follows from the fact that linear interpolation converges
quadratically if f has a bounded second derivative.

Remark Although the asymptotic convergence of normal polylines shows the same rate as the
convergence for regular subdivision on the z-coordinate, the initial convergence could be substan-
tially slower. This happens if a smooth function is well approximated by a sharp cusp as in Figure
15. The initial convergence behaves as described in the worst case analysis of Section 4. From
practical point of view, it is crucial to find initial points on the ‘sharpest’ cusps in the function. In
a sense, these points with highest second derivative bear the essential information of the smooth
curve. In the following sections, we consider smooth horizons in 2-d, i.e., smooth line singularit-
ies. The analysis in this section has illustrated that placing initial points near highly curved parts
of such a line singularity is an interesting choice.

6 Analysisll: Normal Meshesfor 2-d Piecewise Constant Functions

6.1 Horizon class images

This section analyses the adaptivity of the normal offset scheme for so-called horizon class images
[10], that is, functions of the form:

f(@,y) = Lysn@)

where we take for the horizon H (z) a C?-smooth function, as in Figure 1. The notation 1, means
that f(z,y) is the indicator function on A: f(z,y) = 1if (z,y) € A and 0 otherwise. In 1-d, this
horizon corresponds to a step function.
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Fig. 16. (a) Putting limits to how far one can search in the normal direction. This is controlled by the
reference domain. The dotted lines indicate the boundaries in which piercing points are accepted. (b) A 1-d
version of the procedure followed when no normal piercing point is found in the acceptance region

6.2 2-d topological problems near singularities

As discussed above, adjacency handling in 2-d is non-trivial. Careful procedure design is neces-
sary to deal with topological exceptions which otherwise may slow down the approximation con-
vergence. This section discusses a simple algorithm which may not be optimal with respect to
smoothness. It does preserve, however, the singularity approximation potential of a normal mesh
scheme.

Adjacency in 2-d is handled by triangulation. The question arises how to proceed at the lines of
singularity. At first sight, it might look natural to have vertical triangles between three vertices on
the horizon. These triangles constitute a piecewise linear approximation of a vertical, curved sur-
face. Subsequent refinements may cause flipping and mutually crossing triangles when the edges
of these vertical triangles are being subdivided: the new piercing points all lie on the horizon (the
data singularity), but not necessarily in a consistent way. The reason is that the projection of ver-
tical triangles onto the domain space has area to zero. Hence, this function domain can no longer
serve as a parameter or reference space to control the refinement process.

In order to avoid flipping triangles, the parameter domain (in our case domain of the function,
i.e., a subset of IR?) could put limits on how far the algorithm can look in the normal direction.
The projection of the piercing point onto the parameter domain should be such that the refined
triangular grid shows no overlaps (crossing edges) in this reference domain. If such a piercing
point cannot be found in the normal direction, the new point should be taken as far as possible in
the normal direction. This approach at least partly saves the benefits from a normal offset pointing
towards the location of the horizon. A correction coefficient in vertical direction is then needed to
find the corresponding function value. Figure 16(b) has the 1-d version of this case: starting from
a midpoint m we are not allowed to find piercing points further than n (which in 1-d obviously
does not make any sense), so we continue to look in the vertical direction, leading to point v.
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6.3 Polyline approximation of the horizon

Working with vertical triangles on singularities poses at least two problems:

(1) Practically lots of narrow, arbitrarily oriented triangles appear near the data discontinuity.

(2) Theoretically all the complicated exception handling may and probably will destroy the 1-
d fast convergence. Because of their intractability, vertical triangles are excluded, thereby
giving up their intrinsic good approximation of horizons.

Since triangulation is not a goal as such, an alternative is to provide two function values, a lower
and upper value, in each vertex. The goal is now a gradual improvement of these values as an
approximation of the true discontinuity, just as in the 1-d case. We consider three types of edges in
the triangulation: the first class contains edges that connect two horizon vertices. The second class
connects a horizon with a non-horizon vertex, whereas the third class does not interfere with the
horizon. Subdivision of edges in the first class should lead to a new horizon vertex. To maintain
control over this process, we look for a piercing point in a direction normal to the vertical plane
containing these two horizon vertices. This means that the slope of the edge connecting them is
not taken into account.

Subdivision of edges in the second class (connecting a horizon point with a non-horizon vertex)
should not lead to a new horizon vertex, but rather to a better approximation away from the horizon.
We look for a piercing point which lies in the vertical plane containing that edge and the slope of
that edge is the only degree of freedom to be filled in when computing the normal direction. Either
this new vertex does or does not coincide with the existing end point on the horizon. If it does
not, no special action has to be taken: we just insert the newly found vertex. If it does, we update
one of the two function values in the existing point, just as in the 1-d case. We also insert a new
vertex at the midpoint of the edge for two reasons. First, for simplicity, we want to subdivide
every triangle into four children. Second, this avoids long and skinny triangles perpendicular to the
horizon. We store the vertical offset between the function value in this vertex and its prediction on
the subdivided edge as a detail coefficient, together with a label indicating that this is not a normal
but vertical offset. We do not store the normal offset, since the label already tells the reconstruction
algorithm that it should go as far as possible, up to the previously introduced vertex.

Edges in the third class do not need a special treatment. Details and an overview of this algorithm
follow in Sections 6.5 and 6.6.

6.4 Straight horizons

Before we proceed with algorithmic details, let us take a moment to study the behaviour of this
algorithm on straight line horizons. As soon as two points on the horizon have been detected, the
only error comes from triangles with one edge on the horizon. By construction, the area of such a
triangle is always less than a quarter of its parent: the parent has four children and the refinement
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Fig. 17. Normal mesh approximation in 2-d: the shaded area corresponds to the dominant term in the ap-
proximation error,

points are always closer to the horizon than half of the total edge length. As a consequence, the
total area of the error zone is reduced by a factor more than two in every step. Moreover, all edges
that link a horizon point with a non-horizon point inherit the 1-d property that the error height H
after j refinements has the same order of magnitude as the edge length S;:

H; = O(S;). 4)

As a consequence, the total squared L-error satisfies:

If = 17 =0(27%), (5)

to be compared to

If = filI> =0 (277) (6)

for a wavelet approximation. The gain lies in the simultaneous reduction of error width and height.

6.5 Smooth horizons

If the horizon is a smooth curve (that is, at least differentiable with respect to local coordinates),
then the algorithm aims at a polyline approximation of this curve. We then obtain the situation in
Figure 17.

All triangles shown in this picture are in contact with the singularity and therefore they are not
entirely flat in 3-d. Nevertheless, thanks to the fast 1-d error decay, these triangles rapidly ap-
proach the horizontal surface which they are supposed to approximate. In the shaded area how-
ever, between the horizon and its polyline approximation, the approximation of the 2-d function f
is essentially incorrect.
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Fig. 18. (a) Triangles near the polyline approximation (ac) of the horizon need special treatment in order to
keep track of the location of the horizon. Refinement of the polyline approximation should lead to a closer
approximation. Without special action, the true horizon may fall outside control of the approximating edge.
(b) Therefore we give absolute priority to refinement of the approximating edge.

This term turns out to be dominant, so it is crucial to keep it under control. In order to do so, the
algorithm must keep track of where the horizon is (i.e., its geometry) at all times and without (too
much) overhead.

At the analysis (decomposition), singularities can be detected when finding piercing points: if the
piercing surface is vertical (in practical applications: when it is “very steep”), we have a horizon
point. At the reconstruction, the only way we can detect horizon points from the data themselves
is by finding the vertices with two different function values. A newly found horizon point however
has only one function value in its first step of existence. If a horizon vertex follows from the
refinement of an edge in the approximating polyline, this can be monitored in the reconstruction
phase as well.

Since triangle edges near the horizon are subdivided in a special way, it is important to:

(1) ensure that refinement of the horizon approximation leads to new horizon points as often as
possible

(2) detect new horizon points immediately if they do not originate directly from the horizon
approximation.

A refinement of an edge connecting two horizon points should lead to new horizon point, if pos-
sible. The procedure as described in Section 6.2, and in Figure 16 , does not always let the new
point go far enough. Figure 18(a) illustrates what may happen near sharp curvatures. Since the
search field within a triangle is divided into three regions for each edge, the real edge may fall
outside the control of its polyline approximation (ac). Therefore, we modify the procedure, such
that in triangles containing the polyline approximation, the polyline edge has absolute priority.
This is shown in Figure 18(b). Also, retriangulation after refinement is different: normally, the new
vertices are connected with each other and with the end points of the edge that they subdivide. In
Figure 18(b)), however, the edge mmn would have intersections with edges ap and ¢p. Therefore,
we modify the retriangulation algorithm for triangles in which a new horizon vertex is found on
a normal search direction: if necessary, the new horizon vertex is connected to its opposite, old
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Fig. 19. First possible configuration where horizon vertices are found outside the refinement process of the
polyline approximation of the horizon. At the reconstruction, this configuration is detected by the fact that
the horizon approximating edge (ac) is not subdivided in a normal direction.

d

C

Fig. 20. Second configuration with horizon vertices not following from refinement of the polyline approx-
imation (ac) of the horizon. Vertex b was probably an unforeseen, additional horizon vertex in the previous
step, but only now this has to be taken into account.

vertex (leading to edge bp in Figure 18(b)).

Figure 18(b) also illustrates the second issue: connecting a new horizon vertex with its neighbours
may result in two edges crossing the horizon. This poses no problem for edges that are part of the
polyline approximation, but other edges crossing the horizon, like pn and pm in the figure, cause
new horizon points which are not a result of the polyline refinement procedure. It is acceptable for
the algorithm to store the vertex numbers of the first points of a newly found horizon. From then
on, the algorithm should be able to reconstruct the horizon from the coefficients only.

To this end, we use an additional bit attached to each coefficient indicating the interpretation of
that coefficient. If an edge connects two horizon points, the normal search direction was taken
horizontal, as discussed before. If no intersection point is found, this means that the horizon has
at least one intersection with at least one of the two remaining edges. So, if the interpretation bit
tells the reconstruction algorithm that the corresponding coefficient is an excpetion, we are in one
out of three situations, depicted in Figures 19, 20, and 21. A new horizon point may also show up
while the present polyline approximation can still be subdivided in a normal direction. See Figure
22. The next step however immediately leads to the situation in Figure 20.

The two labels of the remaining edges in this triangle indicate in which situation we are: is the third
vertex (b) at the opposite side of the horizon, and if so, do we have just one new horizon vertex (as
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Fig. 21. Third configuration with horizon vertices not following from refinement of the polyline approxim-
ation (ac) of the horizon.

C C

Fig. 22. Fourth configuration with horizon vertices not following from refinement of the polyline approx-
imation of the horizon. Unlike the first three, this one cannot be detected from the refinement action on the
horizon approximating edge. Nevertheless, subdivision immediately leads to the situation in Figure 20.

in Figure 19), or has the horizon intersections with both edges. If there is just one intersection (first
case), this must be on the longer edge. Indeed, otherwise the polyline approximation of the horizon
would have been refined in this step (vertex p in Figure 19 would have been on the horizon.)

The second possibility is Figure 20, where the two other edges should be refined as polyline ap-
proximations of the horizon. Note that in Figure 20, a new exception for the next step is generated
promptly in vertex gq.

The last case, as depicted in Figure 21 is the most complicated one. The approximating polyline
segment belongs to two triangles. If these triangles both lie on the same side of the horizon, this
means we are in the situation of Figure 21. A simple examination of the actual function values
in neighbours of vertex b reveals which triangle should receive a special treatment: all edges of
neighbouring triangles that contain b now have an intersection with the horizon.

In al three cases, to make sure that the algorithm locates the intersection immediately, we search
along the edge itself instead of going normal. The detail coefficient is now a tangential offset. Fig-
ure 23 shows what happens in 1-d. Note that this tangential search is fast in locating the singularity.
Edges that are marked as not having an intersection with the horizon are subdivided in a vertical
direction. The question arises whether this combination of tangential offsets for edges and vertical
offsets elsewhere could serve as the algorithm as such. This however would be poor for further
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Fig. 23. Tangential refinement. Good for fast location of singularities, not appropriate for further conver-

gence.

convergence near the singularity. The use of tangential offsets is limited to these exceptional cases.

6.6 Overview of the subdivision algorithm

Before stating and proving the main result, we summarize the subsequent steps of the subdivision
procedure:

D) (@

(b)

(©)

The input of the analysis (decomposition) is a horizon class function and an initial, coarse
scale grid. That initial grid consists typically of four corner points constituting the rectan-
gular working domain. If this grid contains points on the horizon, this information has to
be stated explicitly at the input. Each vertex in the initial grid has an z- and y-coordinate
and two function values f; and f,. These two values are equal, unless the vertex lies on
the horizon.

The input of the synthesis (reconstruction) algorithm consists of the initial grid and the
normal mesh coefficients together with one additional bit for every coefficient with ad-
ditional information on the interpretation of that coefficient (see below). We refer to this
bit as the interpretation bit.

The objective of both analysis and synthesis is to (re-)construct an approximation of
the horizon class function. This approximation includes a polyline appoximation of the
horizon. This polyline consists of segments which coincide with triangle sides of an
edge-adaptive triangulation. The construction of this multiscale triangulation is part of
the output, as well as one bit for every vertex indicating whether or not this vertex lies
on the horizon. This bit is refered to as the horizon bit. It is created at the moment a
vertex is inserted. The analysis has also the normal mesh coefficients and corresponding
interpretation bits as output, as well as a list of vertices that are on a newly detected
horizon.

(2) For the construction of the approximation, repeat the following steps:

(@)

First scan all vertices that have previously been identified as lying on the horizon curve.
For all edges connecting two such horizon vertices, compute the midpoint and define the
normal search direction as orthogonal to the triangle edge and parallel to the = — y-plane.
Find the piercing point of this search direction with the horizon.
(i) If this piercing point cannot be found within one of the triangles adjacent to the
edge, we are in one of the situations of Figures 19, 20, or 21. Find a piercing point
in vertical direction and label the corresponding interpretation bit as “vertical’.
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(if) In order to find out in which of three possible situations (Figures 19, 20, or 21)
we are, subdivide the longest triangle side, using tangential subdivision. If this suc-
ceeds, we are in the situation of Figure 19. Label the interpretation bit as “vertical’.
Given the history, the reconstruction algorithm is able to interpret “vertical’ as ‘tan-
gential’. Label the shortest triangle side as ‘normal’.

(iii) If the tangential refinement ends up in the existing opposite vertex (point b in the
figures), we are in the situation of Figures 20, or 21. If point b had been detected
as the first vertex of a newly found horizon, this is the situation of Figure 20. Re-
move this point from the list of newly found horizons. Label the refinements of both
remaining triangle sides as ‘normal’. Refinement proceeds in the standard way for
edges connecting two horizon points. Otherwise, label both refinements as “vertical’
and refine accordingly.

(b) Next, refine all other edges.

(i) If an edge connects a horizon point with a non-horizon point, define the normal
search direction to lie in the vertical plane containing that edge, as explained in
Section 6.3.

(if) Otherwise compute the normal search direction, based on the function values in
vertices of the traingles adjacent to the edge under consideration.

(iii) Find the piercing point of this search direction. If this piercing point lies outside the
acceptance region as defined in Figure 16, continue the search in vertical direction.
If the objective function is pierced in a point of discontinuity, add the newly found
point at the end of the list of newly found horizons.

6.7 Convergence behaviour

The previous sections presented an algorithm for normal mesh subdivision on 2-d functions. This
section proves that this algorithm has an optimal approximation rate. This convergence analysis is
made difficult by the geometrical and topological configurations of triangulation and singularities,
and the corresponding exceptions. The subsequent analysis starts from three assumptions, listed
below. The first two are about the smoothness of the singularity, the third one is about the triangu-
lation. The idea behind this third assumption is that at a given point, the triangulation is sufficiently
fine so that we can replace the complicated subdivision procedure from the previous sections by a
straightforward procedure, which is easy to analyze.

Assumption 1 For ease of notations, we assume that the horizon can be described as a smooth
functiony = H(x).

Obviously, since normal offsets have no natural restriction towards functions, any curve with the
same smoothness will work, even if it cannot be written in an explicit function form.

Assumption 2 By a smooth horizon, we mean a twice differentiable function y = H(x) with a
bounded second derivative.
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In practice, this means we exclude curves with infinitely sharp cusps.

A bounded second derivative implies that the horizon curve has a bounded curvature. Indeed, the
curvature x in a point on a curve in two or more dimensions is defined as

_ 49
K= %a (7)

where ¢ stands for the tangential angle of the given curve in a certain point and s is the arc length
in this point. For planar curves that can be written as a function y = H(x), the curvature equals

o %2 B 4 (arctan %) B y"(z)
—ds = 3/2
s L+y@  (1+ @)

It follows immediately that |x| < |y"(x)|. The condition of bounded second derivatives could
easily be relaxed to bounded curvature. It only makes the calculations a bit more complicated.

Assumption 3 We assume that the normal refinement procedure with the exception handling from
Section 6.5 creates an initial mesh in which the horizon is approximated by a polyline. Let h be
the polyline resolution, i.e., the length of the longest segment of the polyline. We assume that h
is sufficiently small. Also, we assume that the altitude of triangles on the polyline is sufficiently
large and that none of these triangles has an edge tangential to the horizon. What we mean by
‘sufficiently large’ and “sufficiently small” will be clarified in the proof of the subsequent theorem.

Alternatively, we could assume that the initial mesh satisfies this condition, no matter how it was
created.

We now state the main result of this paper:

Theorem 11 Given a horizon class function f defined on [0, 1] x [0, 1], or on any compact subset
of R?.

then under the Assumptions 1, 2, and 3, the normal mesh approximation f,, with n non-zero offsets
converges in L, at a rate of

If = fall = O(n7),

Proof of Theorem 11:

The proof consists of two parts. The first part is a construction, including a proof that the con-
struction is possible, the second part is the asymptotic analysis of this construction. We assume
that after j refinement steps, using the procedure described in Section 6.5, the triangulation is in
a shape satisfying the assumptions. For the proof, we concentrate on what happens with further
refinement of one segment of the polyline. We introduce local coordinates, such that the segment
coincides with the y = 0, and the two vertices are at (0, 0) and (k;, 0), see Figure 24. h; < h is now

31



the resolution of this polyline segment. For the further refinement, we want to guarantee that the
horizon approximation behaves as a normal polyline approximation of a 1-d smooth curve, without
interference from the trangles adjacent to this polyline approximation. In order to avoid such in-
terference, we introduce a “forbidden zone’, near the horizon, where no triangle edge refinement
can take place, except for triangle edges that constitute segments of the polyline approximation of
the horizon. In order to be able to construct such a forbidden zone, we must be sure that there is
enough space in all subsequent refinements. The forbidden zone itself will avoid triangles with two
small angles on the horizon. We also want to avoid triangles with arbitrarily obtuse angles on the
horizon (i.e., angles arbitrarily close to 7). This is guaranteed by the following lemma:

Lemma 12 Given is a horizon curve with bounded curvature, i.e., in all points the curvature
as defined in (7), satistfies |x| < K, for some positive K. Given an initial polyline approxima-
tion of this horizon curve, embedded in a triangulation where the polyline resolution A satisfies
ho < ¢-1/K, with ¢ < 1. Call ap the angles in the initial triangulation (i.e., the scale level
0 triangulation) adjacent to a segment of the polyline approximation. (The index & runs over the
total number of angles, say £ = 0,...,n — 1.) Consider a normal refinement scheme where the
approximation of the horizon is refined as a normal polyline. Edges connecting a horizon vertex
with a non-horizon vertex are refined as described in Section 6.3. It then holds for all j that

Max aj < Qax 1= max(ml?x o, T/2) + (7/2) - arcsin(K hy/2). (8)

The proof of this lemma can be found in an appendix. This lemma is based on an assumption of
bounded curvature. The reason is that the proof goes by induction where every step begins with the
introduction of a local coordinate system. The subsequent coordinate systems are translations and
rotations of each other. Curvature is independent of these operations, whereas the second derivative
is not. On the other hand, if the initial horizon has bounded second derivative, it also has bounded
curvature and if the polyline resolution satisfies the conditions of the Lemma, all local coordinate
systems constructed as in Figure 24 allow to define M = supy, ;, [H"(z)|.

As elaborated in the proof of Lemma 9, it follows immediately that sup, ., | H'(z)| < Mh;/2 and
supyo .1 [ H(2)| < Mh3/8.

We are now ready to define the ‘forbidden zone’ near the horizon which replaces all exception
handling procedures described in Section 6.5. This forbidden area is a strip adjacent to the segment
of the polyline approximation of the horizon. The border of this forbidden area is parallel to the
polyline segment, and the y-value F}; should accumulate to catch the following effects:

(1) The maximum horizon value: Mh?/&
(2) The maximum slope over a distance of M h;/2 (from h;/2 to one of the end points)
(3) A triangle with an obtuse angle in one of its horizon vertices.

Let C; = tan(amax — 7/2), then we take

F_3Mh§ 1
T8 1-CMh/2
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Fig. 24. Triangles containing the horizon cannot have arbitrarily obtuse angles in horizon vertices. The bold
line is the horizon curve, the full lines are adjacent triangles at two successive scales. Dashed lines are
constructions for the proof of Lemma 12.

The second factor corrects for possible obtuse angles. As described in Section 6.3, edges connect-
ing a horizon vertex with a non-horizon vertex are subdivided in a 1-d fashion. If the new point has
x and y coordinates on the existing vertex, we proceed as before: the approximation value in that
vertex is updated, and we also insert a new vertex at the middle point of that edge (vertical offset).
If the normal offset however points towards a vertex on the edge in the forbidden zone, i.e., a point
with y-coordinate below F};, we stop at the forbidden border and from there proceed vertically. The
edges connecting the new vertex with its neighbours cannot possibly have an intersection with the
horizon.

Before proceeding and using this exception handling rule, we must be sure that the construction of
a forbidden zone is possible in each successive step. First of all, the altitude of the initial triangle
must be at least twice the width of the forbidden strip. Second, this must also be the case in all
subsequent steps. The worst case scenario in step j corresponds to a new vertex right on the border
of the forbidden strip, see Figure 25. The condition is F; 1 < 7,41,1/2, where 7,4 ; is the altitude
of the child triangle. It is clear that this altitude satisfies 7,1, > F; — Mh? /8. Because, by Lemma
9, limy; 50 hjy1/h; = 1/2, we can, for sufficiently small /; choose a constant C' arbitrarily close
to 1, such that ~;.; < Ch;/2 and we know for certain that C' < 2, so we can write:

3MR?,, 1
Fi= !

8 1—CMhj1/2
_ 3Mhi,, 1
- 8 1-CMh;/2
C*3Mh? 1
<
= 4-8 1-C;Mh;/2
_ 3C2 M~ 1

48 1-C/Mh;/2
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border of forbidden (level j)

Bbrder of forbidden area
s (level

Fig. 25. At sufficiently fine scale, it is possible to replace all exception handling with one simple rule, i.e.,
the construction of a forbidden area, in which no new vertex is allowed. This area does not contain the
present polyline segment, so refinements on existing vertices is still allowed. This forbidden area prevents
all exceptions in further steps, and makes the asymptotic analysis easier.

_3C? (3Mh; MR\ 1 1
4 8 8 ) 21— C,Mh;/2
L3¢ 3Mh3 1 MR\ 1
~ 4 8 1—CMh;/2 8 )2
3C? Mh3\ 1
L I 2N A

- (5-5)
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The construction is therefore possible as soon as 3C?/4 < 1, which is the case for h; sufficiently
small.

Figure 17 illustrates that two effects determine the convergence rate of the normal offset approx-
imation:

(1) the polyline approximation of the edge, and
(2) the approximation near that polyline.

We call f; the approximation of f after j refinement steps (i.e., at level j) and f][l] the horizon class
function where the horizon is the polyline approximation after 5 refinement steps of the horizon in
f. While f; has non-flat triangles near the polyline approximation of the horizon, all triangles in

f]m are flat. f; can be considered as an approximation of f[l], which in its turn is an approximation
of f. We then have for the L,-error norm:

1= Fll2 < If = B9+ 170 = 5112
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Fig. 26. One refinement at the convex side of the horizon.

The actual proof (the second part) now consists of three analyses:

(1)

()

(3)

The asymptotic behaviour of the polyline approximation of the horizon.

Since the forbidden area prevents any exception, the polyline approximation of the horizon
reduces to what happens in 1-d with a normal polyline approximation of a smooth curve. If
we call H; the polyline approximation of horizon H, then according to Corollary 10 we have
|H;(x) — H(x)| < C27%. As a consequence,

I1f = V12 = o@2%).

Triangles lying on the convex side of the horizon, with two vertices on the horizon. The
analysis for these triangles starts from what we know about straight horizons, discussed
in Section 6.4. In Figure 26, we know by construction that the area |Apma| of triangle
Apmea satisfies |[Apmal| < |Aabel|/4. The correction for the non-straight horizon leads to
|Apnal| < |Aabe|(1 + M227)/4. If we denote by A; the total area of triangles with two
vertices on the horizon, we have that A, < A;(1+M2~%)/2. Since the correction vanishes
as j increases, we can write

A;=0((2-97),

for arbitrary positive .
Triangles lying on the concave side of the horizon, or triangles near an inflection point, have
a forbidden area. This zone cannot change the fact that the total area A; of triangles with two
vertices on the horizon satisfies A; ., < A;/2.

Just as in Expression (4) for the straight horizon case, the error height H; in a vertex on
the horizon after j refinements has the same order of magnitude as the length S; of the edge
connecting this horizon vertex with a non-horizon vertex. This allows to conclude that

1 = 1P = 0 ((2-)7%)

The factor ¢ is due to the convex side only.
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Putting these elements together, we obtain a convergence rate of:

If = filP=0(27%).

The number » of non-zero coefficients needed for the approximation f; at level j, satisfies:

n= 0(2])a

from which we conclude that the Lo-error of a nonlinear n-term approximation f,, decays as

If = fall=O(n7"). O

For reconstruction, the procedure requires storage of one coefficient for each new vertex plus a
label telling whether this offset is normal or vertical. We also have to label horizon vertices that are
not found by subdivision of an edge connecting two horizon vertices. The number of these “initial”
horizon points is of course neglectible.

7 Numerical Results

We first run the algorithm on an artificial test image, depicted in Figure 27(a). This image consists
of four areas with constant grey values, separated by sharp, edges with bounded curvature (lines
and circular arcs). Figure 27(b) shows a normal mesh approximation after 4 refinement steps, and
Figure 27(c) displays the triangulation superposed to the original image. These images clearly
illustrate that the triangulation is adaptive, leading to sharp approximations of the edges. An ap-
prxomation with a non-adaptive triangulation is depicted in Figures 27(d) and 27(e). Figure 27(f)
shows an approximation with the 5 coarses levels of a wavelet transform. As can be expected,
the approximation of the edges is blurred and blocky. This approximation involves more detail
coefficients than the normal mesh approximation in Figure 27(b). For the wavelets, we used the
biorthogonal wavelets of Cohen, Daubechies, and Feauveau with two vanishing moments. The
lifted implementation of this wavelet transform is the simplest scheme with a linear prediction
operator. It is therefore close to the prediction operator in the normal offset approach.

We now apply the normal offset decomposition to two examples of (digital) images. These images
are discrete sets of pixels. In order to find normal piercing points, we need to interpolate these
pixel matrices. A trivial triangular mesh allows for a piecewise planar interpolation in each point.
As a consequence, there is no real discontinuity, only steep transitions. Many edges in images
are blurred over several pixels anyway. The special actions to deal with real discontinuities are
therefore unnecessary in this practical example.

Figure 28 compares a six level wavelet reconstruction with a six level normal offset reconstruc-
tion. The peppers image in Figure 29 is more dominated by large, smooth areas, separated by long,
smooth edges. In this Figure, we compare a five level wavelet reconstruction with a five level nor-
mal offset reconstruction. Again, the adaptive triangulation leads to sharper edge reconstruction.
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(b)

(d) (e) (f)

Fig. 27. An artificial test example: (a) image with four areas of constant grey value, separated by edges with
bounded curvature. (b) Normal mesh approximation after 4 refinement steps. (c) Corresponding adaptive
mesh, superposed to the original image. (d) Approximation by lifted wavelet decomposition on non-adaptive
mesh. (e) The corresponding mesh. (f) Approximation using 5 coarsest levels of a classical tensor-product
(i.e., separable) 2-d wavelets.

For small structures, such as the eyes in the photograph, or for texture, wavelets perform better
in filling up the details. This suggests that a combination of both approaches might be interesting
in practical applications. The application of normal meshes for real images is subject of current
research. The results in this paper should therefore be seen as provsional.

8 Discussion and Conclusions

We have introduced an adaptive multiscale triangulation scheme for images based on a normal
mesh decomposition. The scheme outperforms wavelet approximation thanks to the combined
efforts of:

e adaptivity of the normal mesh approach. Normal mesh coefficients carry both information on
location (or geometry) and discontinuity of the edge.
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(@) (b)

Fig. 28. Normal offsets (b), compared to classical wavelets (a). CDF 2,2 wavelets, i.e., linear prediction
followed by two-taps update (i.e., update with two coefficients). Normal offsets are directed towards the
edges. Triangulation allows for sharper edge reconstruction.

€) (b)

Fig. 29. A second test example, similar conclusions as in Figure 28.
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e Detter approximation of edge contours when using triangulations instead of blocky tensor product
wavelets.

Normal meshes could be used for image modeling, compression, and processing. However, al-
gorithms will have to take into account that the decomposition is highly nonlinear.

Normal offsets are the key to adaptive triangulation of 2-d data sets. These data may contain line
singularities, posing substantial problems to any tensor product based decomposition. In a normal
offset decomposition the multiscale detail coefficients carry information on the location of the line
singularities. For horizon class images, this leads to a O(n~') approximation. The procedure is
highly nonlinear. Topological exceptions need to be dealt with carefully.

Current research concentrates on the applicability of the normal offset concept on real images:

(1) In practice, a good initial mesh seems to have crucial impact on the performance. The same
idea of normal search can be used to select a limited number of crucial, coarsest scale samples
(pixels).

(2) The nonlinear character of the decomposition itself makes it harder to analyse the effect of
removing or modifying a given coefficient. An analysis in 1-d is possible, e.g. in L;. In 2-
d, the topological exceptions complicate the whole thing: changing a single coefficient may
influence the topology on the following, finer grids.

(3) The error of a normal mesh approximation in 2-d is completely dominated by the error of this
piecewise linear approximation of the geometry information in the edge. This observation
suggests that “curved” triangles have the potential of catching the geometry information even
better.

(4) This observation also explains why nonlinear approximation, for compression, is a non-trivial
task. Thresholding or tree structured coefficient selection has to deal with the topological
aspects.

(5) In practice, images are obtained as samples on a square grid, so using normal meshes is
equivalent to a remeshing operation. A second inverse remesh would be necessary to display
a normal mesh approximation using a convential display or printer. This makes things more
complicated in practice.

Appendix A: Proof of Lemma 7

First note that the midpoint of the lobe containing 7 /3 satisfies:

mn:ﬂ-/?"i_Ana

with

A= ()" o
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The end points are the midpoints from the previous two steps. If n is even, then a,, = m,,_, and
b, = m,_1. If nis odd, we have a,, = m,,_, and b,, = m,,_». The rest of the proof concentrates on

the n even case. The odd case is completely similar.

Second, the average log error reduction for angles in the = /3-lobe can be simplified to:

n—1 n

L 1
77n(04) “n log (H tan 2k H tan 2’“04 )

k=1

and its derivative equals:

ok 9k+1
) Z (sm 2kq) sm(2k+1a)> '

N

We show that for all even n:

(1) 7' (ma) > 0,
(2) M () — 7' () has no zero,
which is sufficient to prove the lemma. Note that 7,' (o) = —7,' (2m,, — ).

We proceed by induction. The main difficulty is that the interval on which we consider 77, changes
too, so let us set:

r=2""%(a—my),
and

ful@) :=n 727"z +m,,)
2k ok+1
= — kzl (sin(?k(2n+2x + mn)) + Sin(2k+1 (27n+2x + mn)))
=- Z gni 1 N 2
Sln 22 ig 4 Qn— z7T + 2n—iA ) sin(23—ix + 2n—i+1% + 2n_i+1An)

n

1 2
— _ 271, % _ _ _
Z <sm 2270y 4 201 E 2270/ * sin(23~g 4 2n—iH1E 4 23—1A2)>

Note that sin(2™"?7/3 + u) = sin(2™7/3 + u), so the first n — 1 terms in the expression for
fnro(x) are equal to 4 f,(x) and hence

1 2
n =4f, -4 - :
Jnt2(w) = 4n(a) <s1n(22—"x + 4% 4+ 227"Ay) * sin(23—"x + 8% + 23—”A2))
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1 2
-2
(sin(?l—"x + 2% +217"Ay) T sin(22-"z + 4% + 22—"A2)>

If we define

H(u) = —4 R —2 L
= sin(4u +4%) = sin(8u + 8%) sin(2u + 2%)  sin(4u +4%)

we have

.T+A2)

Fural@) = 410+ H (25

where fo(z) = 0.

This allows to fill in the values we need:

(1)

)

T (My) = fa(0) = 4f,—2(0) + H (2%2) . S0, f2(0) = H(A,) ~ 1.4889. Since H (u) is

monotonously decreasing on [As, 0], we can construct a minorant for f,,(0):

It is easy to prove that all elements in f, are positive, and hence so is f,(0). This proves that
T (my) > 0.
Next, we compare the derivative of the mean log decay with its mirror:

' (@) = ' (@) = fu(@) + fa(=2) = (fa-2(2) + fa-2(~2))
T + AQ —T + AQ
o (1 (5=) + 1 (Z5=))
We want to prove that this never has a zero. It can be proven that the first two expressions,

for n = 2 and n = 4 are always positive with a minimum in z = 0. In order to extend this to
arbitrary n, we first note that for even n > 4

T+ AQ —T + AQ
i(=t) +# ()
reaches its (negative) minimum in the end points x = =£x/16. Second, this minimum is
bounded by 2H (0). (All this requires plots and/or intensive calculations.) This allows to con-

struct a positive minorant sequence for f,,(x) + f,.(—=x), from which it follows that 77" (o) —
7n' () is strictly positive on the entire lobe.

This concludes the proof of Lemma 7. Following the argument in the last paragraphs of Section 3,
this also concludes the proof of Theorem 3.
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Appendix B: Proof of Lemma 12

Consider a detail of the initial setting at level j, sketched in Figure 24. The polyline segment ab
is a local approximation of the horizon curve. This curve is a function y = H(z) in the local
coordinate system.

After refinement, the angles in the vertices from the previous (coarser) scale, a and b equal
i1k = @k = 05 Where the index function £(j, k) maps the angle at scale j, location %
to its corresponding angle at scale j + 1. The offset angle 6, x, indicated in Figure 24 is maximized
by maximizing the normal offset, i.e., the distance between the normal subdivision point n and
its predicting midpoint m. Given the maximum curvature, K, the curve leading to the largest off-
set, is a circular arc with radius R = 1/K. By basic goniometry, the corresponding offset is then

R —/R? — h}/4 ~ Kh3/8, and the maximum angle offset

0 max 1= max 0;r = (1/2) - arcsin(h;/2R) < wh;/8R = Kmh;/8. 9)

The angles in the newly inserted vertex n are maximized if the new points p, g, =, and s, coincide
with the midpoints of the corresponding edges (thereby giving zero normal offsets). Indeed, by
construction, these refinement points cannot be further away from the horizon. From Figure 24, it
follows that

a/ﬁpgtﬁ';):a/j\c:(;b\c-i-ﬁ.

For the angle anr, the analysis falls apart into two cases. If the angle arm < 7 /2, then the circle
passing through arm has its center below am, hence the line segment mmn lies entirely outside
that circle. As a consequence, the angle anr is smaller than amr, since both are subtended by
the same chord, ar, but amr is inscribed in the circle, while an lies outside the circle. This
first case implies the case that amr is obtuse. In other words, if the angle abd = amr > 7/2,
its offspring an is smaller. If arm > 7 /2, the angle anr can be arbitrarily close to 7/2 — 0,
namely if mmar tends to zero while am is kept constant.

All together, we have that

MAax @41, < Max (7r/2, ml?x(ozj,k + 9-,;6)) . (10)

By induction, it follows that
j

Max < max(mﬁx ok, T/2) + Y max 0; k- (12)
i=1
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Using equation (9), this becomes:

J
max c < max(m]?X o, 7/2) + (K7 /8) - > hs. (12)

=1

A straightforward induction argument proves that h; is always smaller than the arc length of the
circle segment with radius R, subtended by a chord of length hq/2¢. These majorant arc lengths
constitute a geometrical series themselves, so the summed arc lengths are bounded by twice the
initial arc length of a circle segment with radius R, subtended by a chord of length hy. As a
consequence, we may write:

Max < max(m}gx ok, T/2) + (K7/8) - 2 - 2R arcsin(ho/2R)
= max(mlixx ao, T/2) + (7/2) arcsin(K ho/2).
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