
Introduction and usefull hints for the R

software
Maarten Jansen

What is R

• Statistical software and programming language

• Freely available (inluding source code)

• Started as a free re-implementation of the S-plus programming language

• Websites

– R-CRAN = Comprehensive R Archive Network

http://cran.r-project.org/

– The R homepage

http://www.r-project.org/

– Belgian mirror for installation (KU Leuven)

http://www.freestatistics.org/cran/

©Maarten Jansen STAT-F-413 — R p.1

GUI and Rcmdr

• In Windows, R opens by default as a Graphical User Interface (the basic

R-Gui)

• Further refined interaction with the user is possible through the R-commander,

which is an R-package that needs to be installed

• Other GUI’s for R include

– RStudio

– Rattle

– Red-R

– JGR

– ...

• We first discuss the installation of R-packages

©Maarten Jansen STAT-F-413 — R p.2

R-packages

• R-packages add advanced routines/software to basic R

• See

http://cran.r-project.org/web/packages/

for a list of packages

• Some of these packages come with documentation (i.e., an online book),

which is listed on this page

http://cran.r-project.org/other-docs.html

• Packages have to be downloaded and installed (once)

– Using the R-GUI: Click the button packages, this starts a dialogue and

lists all packages availaible

– Alternatively, type

install.packages("mypackage",dependencies = TRUE)

Mind the quotes

– Whatever method, you choose, while installing a package, R needs ac-

cess to the internet to download it, so you must work on-line

©Maarten Jansen STAT-F-413 — R p.3

• Packages have to be loaded in every R session again, using the command

library(mypackage)

No quotes this time

• Example: download, install and load the R-commander

– Download and install (once):

install.packages("Rcmdr",dependencies = TRUE)

– Load (every session again):

library(Rcmdr)

©Maarten Jansen STAT-F-413 — R p.4

Browsing through folders and loading data (I)

• Loading statistical routines: packages

• Loading data:

datatable = read.table(file.choose())

opens a window to browse for a file; then creates a matrix from that file

• Alternatively:

getwd()

tells you the working directory.

setwd("F:/Rfiles")

sets the working directory to e/Rfiles (mind the quotes)

Then load the file

datatable = read.table("mesquite.txt")

©Maarten Jansen STAT-F-413 — R p.5

Browsing through folders and loading data (II)

• Changing the working directory is also possible through the menu of the

basic RGui:

File > Change dir... >

• All at once:

datatable = read.table("F:/Rfiles/mesquite.txt")

• In the Rcmdr:

(1) Click Data, Import data (not: Load data set), from text file...;

(2) Enter name for data set, tick off “Variable names in file”

(3) Browse through your folders.

©Maarten Jansen STAT-F-413 — R p.6

A text file as input data file

• An input file typically contains a table of values (see example of mesquite.txt

on slide 8). Once successfully loaded, this table is accessible throughout

the session.

• The columns of the table are given default names "V1", "V2", etc., un-

less the data file provides a header with the names as in the example of

catdataexemple.txt (see slide 9) The names in the header are stored

into the current session if the option header is activated:

datatable = read.table("catdataexemple.txt",header=TRUE)

• In Rcmdr: proceed as on slide 6, but tick the “Variable names in file”

• Extract variables from tables:

datatable$V1

x5 = datatable$V1[5]

Or use attach (see slide 13)

©Maarten Jansen STAT-F-413 — R p.7

The file mesquite.txt looks like this:

2.50 2.3 1.70 1.40 723.0

5.20 4.0 3.00 2.50 4052.0

2.00 1.6 1.70 1.40 345.0

1.60 1.6 1.60 1.30 330.9

1.40 1.0 1.40 1.10 163.5

3.20 1.9 1.90 1.50 1160.0

1.90 1.8 1.10 .80 386.6

2.40 2.4 1.60 1.10 693.5

2.50 1.8 2.00 1.30 674.4

2.10 1.5 1.25 .85 217.5

2.40 2.2 2.00 1.50 771.3

2.40 1.7 1.30 1.20 341.7

1.90 1.2 1.45 1.15 125.7

2.70 2.5 2.20 1.50 462.5

1.30 1.1 .70 .70 64.5

2.90 2.7 1.90 1.90 850.6

2.10 1.0 1.80 1.50 226.0

4.10 3.8 2.00 1.50 1745.1

2.80 2.5 2.20 1.50 908.0

1.27 1.0 .92 .62 213.5

©Maarten Jansen STAT-F-413 — R p.8

The file catdataexemple.txt looks like this:

category X

1 23

1 24

1 32

1 25

1 21

1 19

2 32

2 31

2 35

2 28

2 31

3 31

3 24

3 42

©Maarten Jansen STAT-F-413 — R p.9

Creating data

make a vector by

x = c(2,3,4)

make the matrix A =







1 2 3

4 5 6

7 8 9






by

A = matrix(c(1,2,3,4,5,6,7,8,9),ncol=3,byrow=TRUE)

or

A = matrix(c(1,2,3,4,5,6,7,8,9),ncol=3,byrow=1)

Matrix-vector product:

A%*%x

Remarks

• Tables are not matrices

• Simple * sign is used for pointwise product. The philosophy behind this is that R

is a statistical software, not a linear algebra package (like Matlab). Central concept in statis-

tics are random variables. Multiplication of random variables (used in correlation, describing

interactions) proceeds point by point on the samples.

©Maarten Jansen STAT-F-413 — R p.10

Displaying data

Let x be a matrix of data in the work space, then

x

displays the whole matrix

x[1,]

displays the first row

x[2,]

displays the second row

x[,3]

displays the third column.

©Maarten Jansen STAT-F-413 — R p.11

Displaying large vectors

The display could look like

[1] 72 66 64 66 40 74 50 0 70 96 92 74 80 60 72

[19] 30 70 88 84 90 80 94 70 76 66 82 92 75 76 58

[37] 76 76 68 72 64 84 92 110 64 66 56 70 66 0 80

meaning: the first element is 72, then the second is 66, etc.

The 19th element is 30, then the 20th is 70, etc.

The 37th element is 76, then the 38th is again 76, etc.

©Maarten Jansen STAT-F-413 — R p.12

Naming and renaming columns in tables

Suppose we have uploaded the data table into

mesquite = read.table("F:/Rfiles/mesquite.txt")

then

names(mesquite)

displays the names of the columns of table mesquite

names(mesquite)=c("x1","x2","x3","x4","y")

renames the columns

to give direct access to these variables x1,x2,x3,x4,y use

attach(mesquite)

allows to compute, for instance

mean(x1)

©Maarten Jansen STAT-F-413 — R p.13

Regression and ANOVA

First the estimation

Perform linear fit lm:

mesquite = read.table("mesquite.txt")

names(mesquite)=c("x1","x2","x3","x4","y")

attach(mesquite)

fit1=lm(log(y)˜log(x1)+log(x2)+log(x3)+log(x4))

fit1

In case there are several active data matrices in the session, with possible

shared names for the variables, one might prefer not to use attach. In that

case, we can do the analysis with

fit1 = lm(log(y)˜log(x1)+log(x2)+log(x3)+log(x4),data=mesquite)

Then the inference

Anova must be performed on a fit, it cannot be performed on raw data.

anova(fit1)

©Maarten Jansen STAT-F-413 — R p.14

Don’t forget to include interactions

attach(mesquite)

fit1 = lm(log(y)˜log(x1)+log(x2)+log(x3)+log(x4)+log(x1)*log(x2))

Remark

log(x1*x2)

would lead to NA (not-a-number, undefined), because log(x1x2) = log(x1) +

log(x2) (unidentifiable model)

©Maarten Jansen STAT-F-413 — R p.15

Omitting the intercept

fit1 = lm(log(y)˜log(x1)+log(x2)+log(x3)-1)

©Maarten Jansen STAT-F-413 — R p.16

Categorical data analysis

datatable = read.table("catdataexemple.txt",header=TRUE)

the option header=TRUE preserves the names in the txt-file (see before)

fitC = lm(X˜factor(category),data=datatable)

anova(fitC)

©Maarten Jansen STAT-F-413 — R p.17

Setting up simulations

Generating random values...

mu = 10

stdev = 3

n_simul = 100

samplesize = 40

set.seed(0)

X = matrix(rnorm(n_simul*samplesize,mean=mu,sd=stdev),nrow = n_simul)

Xbar = rep(NA,n_simul)

The variable Xbar is initialised as a vector of values NA (Not-a-number). If

further calculations fail in replacing this values, this is easily detected (taking

zeros as initial value may hide failed calculations if the user thinks 0 is the

outcome)

Next, we compute sample means for all rows of X, using a user-defined func-

tion

©Maarten Jansen STAT-F-413 — R p.18

User defined functions

Now define a function for confidence intervals

confint = function(X,alfa=0.05,side="2"){

Xbar = mean(X)

S2 = mean(Xˆ2)-Xbarˆ2

n = length(X)

CIwidth = ifelse(side=="L"|side=="R",

sqrt(S2)*qt(1-alfa,n-1)/sqrt(n),sqrt(S2)*qt(1-alfa/2,n-1)/sqrt

lowerbound = ifelse(side=="L"|side=="2",Xbar-CIwidth,-Inf)

upperbound = ifelse(side=="R"|side=="2",Xbar+CIwidth,Inf)

return(list(lowerbound,upperbound,Xbar,S2))

}

Note the use of default values (alfa=0.05,side="2") in the definition of

the function

©Maarten Jansen STAT-F-413 — R p.19

Loading user defined functions from a file

• Make a file confint.r with the definition of the function as on slide 19

• The filename is free (does not have to be the same as the function name)

• One file may contain several definitions, or other routines

• Type source("confint.r") or source("F:/Rfiles/confint.r")

©Maarten Jansen STAT-F-413 — R p.20

Using user defined functions

A user defined function can be use througout the current session, for instance

in

X = rnorm(100,mean=mu,sd=stdev)

ci = confint(X)

ci = confint(X,alfa=0.01)

Non-default values can be passed in the right order or explicitly by using the

variable name followed by an equal sign and a value.

For use on all rows of a matrix, use apply:

X = matrix(rnorm(200,mean=mu,sd=stdev),nrow=2)

ci = apply(X,1,confint)

©Maarten Jansen STAT-F-413 — R p.21

Some graphical commands

• plot(x1)

plot(x1,type="l") (for plots with polylines)

plot(y˜x1,col="blue")

(plotting y as function of x1)

• Two plots on the same window: suppose we want to plot two rows of the

random matrix on page 18.

plot(X[,1],type="l",col="red")

lines(X[,2],col="blue")

Define your own colors:

lines(X[,3],col=rgb(0.23,0.656,0.28))

• For adding points:

points(X[,3],col=rgb(0.23,0.656,0.28))

©Maarten Jansen STAT-F-413 — R p.22

Exporting to eps

Export your graph to encapsulated postscript (eps). In R, you have to redo all

the plot commands after initializing

postscript("example1.eps",horizontal = FALSE, onefile = FALSE)

and conclude by

dev.off()

The command postscript makes the current plot on screen inactive.

The command dev.off() closes the current active device (postscript, pdf or

window on screen)

©Maarten Jansen STAT-F-413 — R p.23

Exporting to eps or pdf

So, in order to make an eps of the plot on slide 22:

postscript("example1.eps",horizontal = FALSE, onefile = FALSE)

plot(X[,1],type="l",col="red")

lines(X[,2],col="blue")

lines(X[,3],col=rgb(0.23,0.656,0.28))

dev.off()

Export to pdf:

pdf("example1.pdf",horizontal = FALSE, onefile = FALSE)

plot(X[,1],type="l",col="red")

lines(X[,2],col="blue")

lines(X[,3],col=rgb(0.23,0.656,0.28))

dev.off()

©Maarten Jansen STAT-F-413 — R p.24

Graphics for exploratory data analysis

• boxplot(x1)

for a single boxplot; recall that single boxplots are of little practical use; try

to compare several variables:

boxplot(x1,x2)

On a matrix: boxplot(mesquite) creates boxplots for all columns, and

it labels each plot with the columns’ names

It is possible to apply a transformation to all elements of a matrix:

boxplot(log(mesquite))

• Normal probability plot (= qq plot against theoretical normal distribution):

qqnorm(x1)

• QQ-plot (two empirical distributions): qqplot(x1,x2)

• Histograms: hist(x1)

(use ?hist for info on parameters, such as number of bins etc.)

©Maarten Jansen STAT-F-413 — R p.25

Getting help

Besides the numerous documentation on the internet, getting help in R pro-

ceeds by

help(<your command>)

or, equivalently,

?<your command>

Tab completion helps in finding options: type part of a command + Tab

©Maarten Jansen STAT-F-413 — R p.26

Quitting R

quit()

or, equivalently,

q()

(Don’t forget the brackets)

When using R, think about

• (brackets)

• ”quotes”

• Question marks ? for help

• Tab completion

©Maarten Jansen STAT-F-413 — R p.27

Programming in R, compared to Matlab

• A different basic philosophy

– Matlab : procedural programming language

– R: object oriented programming language

• Central concept in Matlab programming is a procedure or routine: A Mat-

lab routine calls other subroutines and functions from files

• Central concept in R is an object: Data matrices, data fits (estimations),

inferences, packages, R functions are all objects

– Objects must first be created or defined. Two ways:

* From the command line

* From a file: read.table, library, source

– Once an object is created/defined/loaded/read, it can be used throughout

the R session

* Change properties (e.g.: names of variables in a data matrix)

* Use a function for the creation of new variables

©Maarten Jansen STAT-F-413 — R p.28

